首页> 外文期刊>Physical review letters >Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots
【24h】

Probing Electron-Phonon Interaction through Two-Photon Interference in Resonantly Driven Semiconductor Quantum Dots

机译:探测电子 - 声子通过谐振驱动的半导体量子点中的双光子干扰相互作用

获取原文
获取原文并翻译 | 示例

摘要

We investigate the temperature dependence of photon coherence properties through two-photon interference (TPI) measurements from a single quantum dot (QD) under resonant excitation. We show that the loss of indistinguishability is related only to the electron-phonon coupling and is not affected by spectral diffusion. Through these measurements and a complementary microscopic theory, we identify two independent separate decoherence processes, both of which are associated with phonons. Below 10 K, we find that the relaxation of the vibrational lattice is the dominant contribution to the loss of TPI visibility. This process is non-Markovian in nature and corresponds to real phonon transitions resulting in a broad phonon sideband in the QD emission spectra. Above 10 K, virtual phonon transitions to higher lying excited states in the QD become the dominant dephasing mechanism, this leads to a broadening of the zero phonon line, and a corresponding rapid decay in the visibility. The microscopic theory we develop provides analytic expressions for the dephasing rates for both virtual phonon scattering and non-Markovian lattice relaxation.
机译:我们研究了光子相干性能通过在谐振激励下通过单量子点(QD)的双光子干扰(TPI)测量的温度依赖性。我们表明,难以区分的损失仅与电子 - 声子耦合有关,并且不受光谱扩散的影响。通过这些测量和互补的微观理论,我们识别两个独立的单独的脱机过程,两者都与声子相关联。低于10 k,我们发现振动格子的放松是对TPI知名度丧失的主导贡献。该过程本质上是非马尔可夫,并且对应于QD发射光谱中的宽声子边界的真实声子转换。在10 k以上,虚拟声子转换到QD中的较高躺着的兴奋状态成为主导的去除机制,这导致零位线的扩大,以及相应的快速衰减。我们开发的微观理论为虚拟声子散射和非马车晶格放松的脱离率提供了分析表达式。

著录项

  • 来源
    《Physical review letters》 |2017年第26期|233602.1-233602.6|共6页
  • 作者单位

    UPMC Univ Paris 06 Sorbonne Univ CNRS UMR 7588 Inst NanoSci Paris F-75005 Paris France;

    DTU Fotonik Dept Photon Engn DK-2800 Lyngby Denmark;

    UPMC Univ Paris 06 Sorbonne Univ CNRS UMR 7588 Inst NanoSci Paris F-75005 Paris France;

    UPMC Univ Paris 06 Sorbonne Univ CNRS UMR 7588 Inst NanoSci Paris F-75005 Paris France;

    UPMC Univ Paris 06 Sorbonne Univ CNRS UMR 7588 Inst NanoSci Paris F-75005 Paris France;

    UPMC Univ Paris 06 Sorbonne Univ CNRS UMR 7588 Inst NanoSci Paris F-75005 Paris France;

    Univ Paris Saclay Univ Paris Sud CNRS Ctr Nanosci & Nanotechnol F-91460 Marcoussis France;

    Univ Paris Saclay Univ Paris Sud CNRS Ctr Nanosci & Nanotechnol F-91460 Marcoussis France;

    Univ Bristol HH Wills Phys Lab Quantum Engn Technol Labs Merchant Venturers Bldg Woodland Rd Bristol BS8 1FD Avon England|Univ Bristol Dept Elect & Elect Engn Merchant Venturers Bldg Woodland Rd Bristol BS8 1FD Avon England;

    DTU Fotonik Dept Photon Engn DK-2800 Lyngby Denmark;

    UPMC Univ Paris 06 Sorbonne Univ CNRS UMR 7588 Inst NanoSci Paris F-75005 Paris France;

    UPMC Univ Paris 06 Sorbonne Univ CNRS UMR 7588 Inst NanoSci Paris F-75005 Paris France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号