首页> 外文学位 >Electronic Interactions in Semiconductor Quantum Dots and Quantum Point Contacts.
【24h】

Electronic Interactions in Semiconductor Quantum Dots and Quantum Point Contacts.

机译:半导体量子点和量子点触点中的电子相互作用。

获取原文
获取原文并翻译 | 示例

摘要

We report several detailed experiments on electron transport through Quantum Point Contacts (QPCs) and lateral Quantum Dots (QDs), created in a Single-Electron Transistor (SET). In the experiment for QPCs, we present a zero-bias peak (ZBP) in the differential conductance, G, which splits in an external magnetic field. The observed splitting closely matches the Zeeman energy and shows very little dependence on gate voltage, suggesting that the mechanism responsible for the formation of the peak involves electron spin. We also show that the mechanism that leads to the formation of the ZBP is different from the conventional Kondo effect found in QDs. [1];In the second experiment, we present transport measurements of a QD in a spin-flip cotunneling regime and a quantitative comparison of the data to the microscopic theory by Lehman and Loss. The differential conductance is measured in the presence of an in-plane Zeeman field. We focus on the ratio of the nonlinear G at bias voltages exceeding the Zeeman threshold to G for those below the threshold. The data show good quantitative agreement with the theory with no adjustable parameters. We also compare the theoretical results to the predictions of a phenomenological form used for the determination of a heterostructure g-factor and find good agreement between the two.;In the third experiment, we report the magnetic splitting, Delta K, of a Kondo peak in G for a QD while tuning the Kondo temperature, TK, along two different paths in the parameter space: varying the dot-lead coupling at a constant dot energy, and vice versa. At a high magnetic field, B, the changes of DeltaK with TK along the two paths have opposite signs, indicating that Delta K is not a universal function of TK. At low B, we observe a decrease in DeltaK with TK along both paths, in agreement with theoretical predictions. Furthermore, we find DeltaK/Delta 1 at low B and DeltaK/Delta > 1 at high B, where Delta is the Zeeman energy of the bare spin, in the same system. [2];In the last experiment, we report the zero-bias differential conductance, of an SET in the Kondo regime as a function of temperature, T, and an in-plane magnetic field B. Scaled plots of both the Tand B-dependent data show universal behavior. At moderate and high B, the magnetoconductance data show good agreement with renormalization group calculations in the spin-1/2 Kondo regime. At very low B, we observe a non-monotonic behavior, which may due to the presence of multiple orbital dot levels with similar energies. Further study is required to confirm this assumption.
机译:我们报告了在单电子晶体管(SET)中创建的通过量子点接触(QPC)和横向量子点(QD)进行电子传输的一些详细实验。在QPC的实验中,我们在差分电导G中显示了零偏置峰(ZBP),该峰在外部磁场中分裂。观察到的分裂与塞曼能量非常匹配,并且对栅极电压的依赖性很小,这表明负责形成峰的机理涉及电子自旋。我们还表明,导致ZBP形成的机制与QD中发现的常规近藤效应不同。 [1];在第二个实验中,我们介绍了在自旋翻转共隧道法中量子点的输运测量,并通过雷曼和洛斯对微观理论的数据进行了定量比较。在存在平面塞曼场的情况下测量差分电导。我们将重点放在偏置电压超过Zeeman阈值时的非线性G与低于阈值时的非线性之比。数据显示了与理论的良好定量一致性,没有可调整的参数。我们还将理论结果与用于确定异质结构g因子的现象学形式的预测进行比较,并找到两者之间的良好一致性。;在第三个实验中,我们报告了近藤峰的磁分裂Delta K在G中进行QD调整,同时沿参数空间中的两条不同路径调整近藤温度TK:以恒定的点能量改变点引线耦合,反之亦然。在高磁场B下,DeltaK随TK沿两条路径的变化具有相反的符号,这表明Delta K不是TK的通用函数。在低B值下,我们观察到沿TK的TK沿DeltaK的减小,这与理论预测一致。此外,在同一系统中,我们发现在低B时DeltaK / Delta <1,在高B时DeltaK / Delta> 1,其中Delta是裸旋转的塞曼能量。 [2];在上一个实验中,我们报告了近藤状态下SET的零偏微分电导随温度,T和面内磁场B的变化。Tand B-相关数据显示普遍行为。在中等和高B时,在自旋1/2近藤状态下,磁导数据与重整化组计算显示出良好的一致性。在非常低的B下,我们观察到非单调行为,这可能是由于存在多个具有相似能量的轨道点能级所致。需要进一步研究以确认这一假设。

著录项

  • 作者

    Liu, Tai-Min.;

  • 作者单位

    University of Cincinnati.;

  • 授予单位 University of Cincinnati.;
  • 学科 Physics Quantum.;Physics Electricity and Magnetism.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号