首页> 外文期刊>Pattern recognition letters >Training algorithms for fuzzy support vector machines with noisy data
【24h】

Training algorithms for fuzzy support vector machines with noisy data

机译:具有噪声数据的模糊支持向量机的训练算法

获取原文
获取原文并翻译 | 示例

摘要

The previous study of fuzzy support vector machines (FSVMs) provides a method to classify data with noises or outliers by manually associating each data point with a fuzzy membership that can reflect their relative degrees as meaningful data. In this paper, we introduce two factors in training data points, the confident factor and the trashy factor, and automatically generate fuzzy memberships of training data points from a heuristic strategy by using these two factors and a mapping function. We investigate and compare two strategies in the experiments and the results show that the generalization error of FSVMs is comparable to other methods on benchmark datasets. The proposed approach for automatic setting of fuzzy memberships makes the FSVMs more applicable in reducing the effects of noises or outliers.
机译:先前对模糊支持向量机(FSVM)的研究提供了一种方法,可以通过将每个数据点与可反映其相对程度的有意义的模糊成员关系手动关联,从而将数据分类为带有噪声或异常值的数据。在本文中,我们在训练数据点中引入了两个因素,即置信度和垃圾度,并且通过使用这两个因素和映射函数,从启发式策略中自动生成训练数据点的模糊隶属度。我们在实验中研究和比较了两种策略,结果表明FSVM的泛化误差可与基准数据集上的其他方法相比。提出的用于自动设置模糊成员资格的方法使FSVM更适用于减少噪声或离群值的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号