首页> 外文OA文献 >Fall detection in a smart room by using a fuzzy one class support vector machine and imperfect training data
【2h】

Fall detection in a smart room by using a fuzzy one class support vector machine and imperfect training data

机译:使用模糊的一类支持向量机和不完善的训练数据在智能房间中跌倒检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper,we propose an efficient and robust fall detection system byusingafuzzyoneclasssupportvectormachinebasedonvideoinformation. Two cameras are used to capture the video frames from which the features are extracted. A fuzzy one class support vector machine (FOCSVM) is used to distinguish falling from other activities, such as walking, sitting, standing, bending or lying. Compared with the traditional one class support vector machine, the FOCSVM can obtain a more accurate and tight decision boundary under a training dataset with outliers. From real video sequences, the success of the method is confirmed with less non-fall samples being misclassified as falls by the classifier under an imperfect training dataset.
机译:在本文中,我们通过使用基于视频信息的模糊支持类支持向量机,提出了一种有效而强大的跌倒检测系统。两个摄像机用于捕获从中提取特征的视频帧。模糊的一类支持向量机(FOCSVM)用于区分跌倒和其他活动,例如步行,坐着,站立,弯曲或躺下。与传统的一类支持向量机相比,FOCSVM在具有异常值的训练数据集下可以获得更准确,更严格的决策边界。从真实的视频序列中,该方法的成功在于,在不完善的训练数据集下,较少的非跌倒样本被分类器误分类为跌倒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号