首页> 外文期刊>Pattern recognition letters >Gaussian Process Dynamical Models for hand gesture interpretation in Sign Language
【24h】

Gaussian Process Dynamical Models for hand gesture interpretation in Sign Language

机译:用于手势语言手势解释的高斯过程动力学模型

获取原文
获取原文并翻译 | 示例

摘要

Classifying human hand gestures in the context of a Sign Language has been historically dominated by Artificial Neural Networks and Hidden Markov Model with varying degrees of success. The main objective of this paper is to introduce Gaussian Process Dynamical Model as an alternative machine learning method for hand gesture interpretation in Sign Language. In support of this proposition, the paper presents the experimental results for Gaussian Process Dynamical Model against a database of 66 hand gestures from the Malaysian Sign Language. Furthermore, the Gaussian Process Dynamical Model is tested against established Hidden Markov Model for a comparative evaluation. A discussion on why Gaussian Process Dynamical Model is superior over existing methods in Sign Language interpretation task is then presented.
机译:过去,人工神经网络和隐马尔可夫模型一直在以手语为背景对人的手势进行分类,并取得了不同程度的成功。本文的主要目的是介绍高斯过程动力学模型,作为手语手势解释的另一种机器学习方法。为了支持这一命题,本文针对来自马来西亚手语的66个手势数据库提出了高斯过程动力学模型的实验结果。此外,针对建立的隐马尔可夫模型对高斯过程动力学模型进行了测试,以进行比较评估。然后讨论了为什么高斯过程动力学模型优于手语解释任务中的现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号