首页> 外文期刊>Pattern recognition letters >PQ kernel: A rank correlation kernel for visual word histograms
【24h】

PQ kernel: A rank correlation kernel for visual word histograms

机译:PQ内核:用于视觉单词直方图的秩相关内核

获取原文
获取原文并翻译 | 示例

摘要

Computer vision researchers have developed various learning methods based on the bag of words model for image related tasks, including image categorization and image retrievalin this model, images are represented as histograms of visual words from a vocabulary that is obtained by clustering local image descriptors. Next, a classifier is trained on the data. Most often, the learning method is a kernel-based one. Various kernels, such as the linear kernel, the intersection kernel, the x2 kernel or the Jensen-Shannon kernel, can be plugged into the kernel method. Recent results indicate that the novel PQ kernel of lonescu and Popescu [8] seems to improve the accuracy over most of the state of the art kernels. The PQ kernel is inspired from a set of rank correlation statistics specific for ordinal data, that are based on counting concordant and discordant pairs among two variables. This paper describes an algorithm to compute the PQ kernel in Otillogn time, based on merge sort. Matlab and C/C++ implementations are provided for future development and use at hap://pericernel,her.oktiapp,coni. Extensive object recognition experiments are conducted to compare the PQ kernel with other state of the art kernels on two benchmark data sets. The PQ kernel has the best results on both data sets, even when a spatial pyramid representation is used. In conclusion, the PQ kernel can be used to obtain a better pairwise similarity between visual word histograms, which, in turn, improves the object recognition accuracy of the bag of visual words system. (C) 2014 Elsevier B.V. All rights reserved.
机译:计算机视觉研究人员已经开发了基于单词袋模型的各种学习方法,用于图像相关任务,包括该模型中的图像分类和图像检索,图像表示为来自词汇的视觉单词直方图,该词汇是通过聚类本地图像描述符而获得的。接下来,对数据进行分类器训练。最常见的学习方法是基于内核的学习方法。可以将各种内核(例如线性内核,交集内核,x2内核或Jensen-Shannon内核)插入内核方法中。最近的结果表明,lonescu和Popescu的新颖PQ内核[8]似乎可以在大多数现有技术内核中提高准确性。 PQ内核的灵感来自一组针对序数数据的秩相关统计信息,该统计信息基于对两个变量之间的一致和不一致对进行计数。本文介绍了一种基于合并排序的Otillogn时间计算PQ内核的算法。在hap://pericernel,her.oktiapp,coni中提供了Matlab和C / C ++实现以供将来开发和使用。进行了广泛的对象识别实验,以在两个基准数据集上比较PQ内核与其他现有技术的内核。即使使用空间金字塔表示,PQ内核在两个数据集上都具有最佳结果。总之,PQ内核可用于获得视觉单词直方图之间更好的成对相似性,从而提高视觉单词袋系统的目标识别精度。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号