首页> 外文期刊>Pattern recognition letters >Orthogonal polynomial function fitting for hyperspectral data representation and discrimination
【24h】

Orthogonal polynomial function fitting for hyperspectral data representation and discrimination

机译:用于高光谱数据表示和区分的正交多项式函数拟合

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose an efficient method based on orthogonal polynomial function (OPF) fitting for hyperspectral remote sensing data representation and discrimination. Given a spectral signature, it is first divided into spectral segments by a splitting strategy. Then, the extracted segments are fitted via OPF fitting. The fitting coefficients of the input spectrum are selected for data representation and discrimination. To validate the usefulness of the proposed method, laboratory spectra and real hyperspectral data were selected for experimental analysis. The results showed that our method can efficiently mine geometric structural information of spectral signatures and compress them into a few fitting parameters. These parameters can be used to sparsely represent the input spectra and effectively distinguish different spectral signatures. In terms of representation, the proposed method is superior to the traditional inverse Gaussian function (IGF) model. Moreover, the OPF sparse feature exhibits better performance than the typical wavelet-based method in terms of achieving a trade-off between feature length and reconstruction error. Furthermore, the use of an optimized nonlinear SVM classifier shows that the discriminative ability for OPF normal features generally improves as the feature length increases and become relatively stable after the length reaches 30. Also the OPF features with the length of 30 can achieve comparable overall accuracies for the original bands and the typical wavelet-based features. As our method is data dependent, the optimal parameter value may vary for different data. In addition, the proposed feature extraction method is very fast and improves the computational efficiency significantly. Overall, the proposed method has considerable potential from the perspective of hyperspectral data analysis. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文提出了一种基于正交多项式(OPF)拟合的高光谱遥感数据表示和识别的有效方法。给定光谱特征,首先通过分裂策略将其分为光谱段。然后,通过OPF拟合对提取的段进行拟合。选择输入频谱的拟合系数以进行数据表示和判别。为了验证该方法的有效性,选择了实验室光谱和真实的高光谱数据进行实验分析。结果表明,我们的方法可以有效地挖掘光谱特征的几何结构信息并将其压缩为几个拟合参数。这些参数可用于稀疏表示输入光谱并有效地区分不同的光谱特征。在表示方面,该方法优于传统的逆高斯函数(IGF)模型。此外,就实现特征长度和重建误差之间的折衷而言,OPF稀疏特征比典型的基于小波的方法表现出更好的性能。此外,使用优化的非线性SVM分类器显示,随着特征长度的增加,对OPF正常特征的判别能力通常会提高,并且在长度达到30后变得相对稳定。同样,长度为30的OPF特征也可以实现相当的总体精度适用于原始频段和典型的基于小波的特征。由于我们的方法取决于数据,因此最佳参数值可能会因不同数据而异。另外,提出的特征提取方法非常快,并且显着提高了计算效率。总体而言,从高光谱数据分析的角度来看,该方法具有很大的潜力。 (C)2016 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Pattern recognition letters》 |2016年第1期|160-168|共9页
  • 作者单位

    Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, 9 Deng Zhuang South Rd, Beijing 100094, Peoples R China;

    Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, 9 Deng Zhuang South Rd, Beijing 100094, Peoples R China;

    Chinese Acad Sci, Inst Remote Sensing & Digital Earth, China Remote Sensing Satellite Ground Stn, 9 Deng Zhuang South Rd, Beijing 100094, Peoples R China;

    Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Key Lab Digital Earth Sci, 9 Deng Zhuang South Rd, Beijing 100094, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Orthogonal polynomial function; Fitting; Representation; Discrimination; Hyperspectral;

    机译:正交多项式函数;拟合;表示;判别;高光谱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号