首页> 外文期刊>Signal processing >A new class of discrete orthogonal polynomials for blind fitting of finite data
【24h】

A new class of discrete orthogonal polynomials for blind fitting of finite data

机译:一类新的离散正交多项式用于有限数据的盲拟合

获取原文
获取原文并翻译 | 示例

摘要

We show that the polynomial unbiased finite impulse response (UFIR) functions derived by Shmaliy establish a new class of a one-parameter family of discrete orthogonal polynomials (DOP). The most noticeable distinction of these polynomials with respect to the classical Meixner, Charlier, Hahn, and Krawtchouk DOP is dependence on only one parameter-the length of finite data. This makes them highly attractive for L-order blind fitting and analysis of informative processes. Properties of the UFIR polynomials are considered in detail along with the moments and recurrence relation. Examples of applications are given to blind approximation and phoneme pitch analysis.
机译:我们表明,由Shmaliy导出的多项式无偏有限冲激响应(UFIR)函数建立了一类新的一类离散正交多项式(DOP)的单参数族。这些多项式相对于经典Meixner,Charlier,Hahn和Krawtchouk DOP的最明显区别是仅依赖一个参数-有限数据的长度。这使得它们对于L阶盲拟合和信息过程的分析非常有吸引力。 UFIR多项式的性质以及矩和递归关系被详细考虑。给出了盲近似和音素音调分析的应用示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号