首页> 外文会议>2014 8th IAPR Workshop on Pattern Recognition in Remote Sensing >Spectral feature extraction based on Orthogonal Polynomial Function fitting
【24h】

Spectral feature extraction based on Orthogonal Polynomial Function fitting

机译:基于正交多项式函数拟合的光谱特征提取

获取原文
获取原文并翻译 | 示例

摘要

We propose a new method for spectral feature extraction based on Orthogonal Polynomial Function (OPF) fitting. Given a spectral signature, it is firstly divided into spectral segments by a splitting strategy. All segments are fitted by using OPF respectively. The features of input spectrum are selected from the fitting coefficients of all segments. 10 laboratory spectra of various materials are selected to validate the ability of the proposed method. The results show that our method can efficiently mine geometric structural information of spectral signatures, and compress them into a few parameters. These parameters can be used to sparsely represent the input spectra and also well discriminate different spectral signatures. The proposed method is more powerful than the inverse Gaussian function model as it can not only will fit the red-edge spectral segment but also can fit other types of spectral curves. Also, the extracted features are slightly better than the original bands at the ability of discrimination in terms of RSDPW in Euclidean space while largely reduce the number of features. Overall, the proposed method has promising prospects in hyperspectral data analysis.
机译:我们提出了一种基于正交多项式函数(OPF)拟合的光谱特征提取新方法。给定频谱特征,首先通过分裂策略将其划分为频谱段。通过使用OPF分别拟合所有段。从所有段的拟合系数中选择输入光谱的特征。选择了10种不同材料的实验室光谱以验证所提出方法的能力。结果表明,该方法可以有效地挖掘光谱特征的几何结构信息,并将其压缩为几个参数。这些参数可用于稀疏表示输入光谱,也可以很好地区分不同的光谱特征。所提出的方法比逆高斯函数模型更强大,因为它不仅可以拟合红边光谱段,而且可以拟合其他类型的光谱曲线。而且,在欧几里得空间中的RSDPW方面,所提取的特征在分辨能力上比原始频带稍好,同时大大减少了特征的数量。总体而言,该方法在高光谱数据分析中具有广阔的应用前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号