首页> 外文期刊>Pattern Analysis and Applications >Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique
【24h】

Adaptive fuzzy c-means clustering algorithm for interval data type based on interval-dividing technique

机译:基于区间划分技术的区间数据类型自适应模糊c均值聚类算法

获取原文
获取原文并翻译 | 示例

摘要

Clustering for symbolic data type is a necessary process in many scientific disciplines, and the fuzzy c-means clustering for interval data type (IFCM) is one of the most popular algorithms. This paper presents an adaptive fuzzy c-means clustering algorithm for interval-valued data based on interval-dividing technique. This method gives a fuzzy partition and a prototype for each fuzzy cluster by optimizing an objective function. And the adaptive distance between the pattern and its cluster center varies with each algorithm iteration and may be either different from one cluster to another or the same for all clusters. The novel part of this approach is that it takes into account every point in both intervals when computing the distance between the cluster and its representative. Experiments are conducted on synthetic data sets and a real data set. To compare the comprehensive performance of the proposed method with other four existing methods, the corrected rand index, the value of objective function and iterations are introduced as the evaluation criterion. Clustering results demonstrate that the algorithm proposed in this paper has remarkable advantages.
机译:符号数据类型的聚类是许多科学领域中的必要过程,而区间数据类型的模糊c均值聚类(IFCM)是最受欢迎的算法之一。提出了一种基于区间划分技术的区间值数据自适应模糊c均值聚类算法。通过优化目标函数,该方法为每个模糊聚类提供了模糊分区和原型。模式及其群集中心之间的自适应距离随每次算法迭代而变化,并且每个群集之间可能会有所不同,或者所有群集都相同。这种方法的新颖之处在于,在计算群集及其代表之间的距离时,它会考虑两个间隔中的每个点。在合成数据集和真实数据集上进行实验。为了将所提出的方法与其他四种现有方法的综合性能进行比较,引入了校正的兰德指数,目标函数的值和迭代次数作为评估标准。聚类结果表明,本文提出的算法具有明显的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号