首页> 外文期刊>Fuzzy sets and systems >Towards hybrid clustering approach to data classification: Multiple kernels based interval-valued Fuzzy C-Means algorithms
【24h】

Towards hybrid clustering approach to data classification: Multiple kernels based interval-valued Fuzzy C-Means algorithms

机译:迈向数据分类的混合聚类方法:基于多个核的区间值模糊C均值算法

获取原文
获取原文并翻译 | 示例

摘要

In this study, kernel interval-valued Fuzzy C-Means clustering (KIFCM) and multiple kernel interval-valued Fuzzy C-Means clustering (MKIFCM) are proposed. The KIFCM algorithm is built on a basis of the kernel learning method and the interval-valued fuzzy sets with intent to overcome some drawbacks existing in the "conventional" Fuzzy C-Means (FCM) algorithm. The development of the method is motivated by two factors. First, uncertainty is inherent in clustering problems due to some information deficiency, which might be incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, etc. With this regard, interval-valued fuzzy sets exhibit advantages when handling such aspects of uncertainty. Second, kernel methods form a new class of pattern analysis algorithms which can cope with general types of data and detect general types of relations (geometric properties) by embedding input data in a vector space based on the inner products and looking for linear relations in the space. However, as the clustering problems may involve various input features exhibiting different impacts on the obtained results, we introduce a new MKIFCM algorithm, which uses a combination of different kernels (giving rise to a concept of a composite kernel). The composite kernel was built by mapping each input feature onto individual kernel space and linearly combining these kernels with the optimized weights of the corresponding kernel. The experiments were completed for several well-known datasets, land cover classification from multi-spectral satellite image and Multiplex Fluorescent In Situ Hybridization (MFISH) classification problem. The obtained results demonstrate the advantages of the proposed algorithms. (C) 2015 Elsevier B.V. All rights reserved.
机译:在这项研究中,提出了核区间值模糊C均值聚类(KIFCM)和多核区间值模糊C均值聚类(MKIFCM)。 KIFCM算法是在内核学习方法和区间值模糊集的基础上构建的,旨在克服“常规”模糊C均值(FCM)算法中存在的某些缺点。该方法的发展受到两个因素的推动。首先,由于某些信息的缺乏,不确定性是聚类问题所固有的,信息的缺失可能是不完整,不精确,零散,不完全可靠,模糊,矛盾等。因此,区间值模糊集在处理不确定性方面表现出优势。其次,内核方法形成了一类新型的模式分析算法,该算法可以通过基于内部积将输入数据嵌入向量空间中并在线性函数中寻找线性关系,从而应对通用数据类型并检测通用关系类型(几何属性)。空间。但是,由于聚类问题可能涉及各种输入特征,这些特征对获得的结果产生不同的影响,因此我们引入了一种新的MKIFCM算法,该算法使用了不同内核的组合(产生了复合内核的概念)。通过将每个输入要素映射到单独的内核空间并将这些内核与相应内核的优化权重线性组合,可以构建复合内核。针对几个知名的数据集完成了实验,这些数据集来自多光谱卫星图像的土地覆盖分类以及多重荧光原位杂交(MFISH)分类问题。获得的结果证明了所提出算法的优点。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号