首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes
【24h】

A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes

机译:城市场景语义分割的课程域适应方法

获取原文
获取原文并翻译 | 示例

摘要

During the last half decade, convolutional neural networks (CNNs) have triumphed over semantic segmentation, which is one of the core tasks in many applications such as autonomous driving and augmented reality. However, to train CNNs requires a considerable amount of data, which is difficult to collect and laborious to annotate. Recent advances in computer graphics make it possible to train CNNs on photo-realistic synthetic imagery with computer-generated annotations. Despite this, the domain mismatch between real images and the synthetic data hinders the models' performance. Hence, we propose a curriculum-style learning approach to minimizing the domain gap in urban scene semantic segmentation. The curriculum domain adaptation solves easy tasks first to infer necessary properties about the target domain; in particular, the first task is to learn global label distributions over images and local distributions over landmark superpixels. These are easy to estimate because images of urban scenes have strong idiosyncrasies (e.g., the size and spatial relations of buildings, streets, cars, etc.). We then train a segmentation network, while regularizing its predictions in the target domain to follow those inferred properties. In experiments, our method outperforms the baselines on two datasets and three backbone networks. We also report extensive ablation studies about our approach.
机译:在过去的一半十年中,卷积神经网络(CNNS)胜过语义分割,这是许多应用中的核心任务之一,例如自主驾驶和增强现实。然而,训练CNNS需要相当大量的数据,这很难收集和费力地注释。计算机图形的最新进展使得可以在带有计算机生成的注释的照片逼真的合成图像上培训CNN。尽管如此,真实图像与合成数据之间的域不匹配会阻碍模型的性能。因此,我们提出了一种课程风格学习方法,以最大限度地降低城市场景语义细分中的领域差距。首先,课程域适配首先解决方便的任务,以推断有关目标域的必要属性;特别是,第一个任务是学习通过地标超像素的图像和本地分布的全球标签分布。这些易于估计,因为城市场景的图像具有强烈的特质(例如,建筑物,街道,汽车等的大小和空间关系)。然后,我们会培训分割网络,同时正规化目标域中的预测,以遵循那些推断的属性。在实验中,我们的方法优于两个数据集和三个骨干网上的基线。我们还报告了关于我们方法的广泛消融研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号