首页> 外文期刊>IEEE Transactions on Image Processing >Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes
【24h】

Weakly Supervised Adversarial Domain Adaptation for Semantic Segmentation in Urban Scenes

机译:弱监督的对抗域自适应,用于城市场景中的语义分割

获取原文
获取原文并翻译 | 示例

摘要

Semantic segmentation, a pixel-level vision task, is rapidly developed by using convolutional neural networks (CNNs). Training CNNs requires a large amount of labeled data, but manually annotating data is difficult. For emancipating manpower, in recent years, some synthetic datasets are released. However, they are still different from real scenes, which causes that training a model on the synthetic data (source domain) cannot achieve a good performance on real urban scenes (target domain). In this paper, we propose a weakly supervised adversarial domain adaptation to improve the segmentation performance from synthetic data to real scenes, which consists of three deep neural networks. A detection and segmentation (DS) model focuses on detecting objects and predicting segmentation map; a pixel-level domain classifier (PDC) tries to distinguish the image features from which domains; and an object-level domain classifier (ODC) discriminates the objects from which domains and predicts object classes. PDC and ODC are treated as the discriminators, and DS is considered as the generator. By the adversarial learning, DS is supposed to learn domain-invariant features. In experiments, our proposed method yields the new record of mIoU metric in the same problem.
机译:语义分割是一种像素级视觉任务,它是通过使用卷积神经网络(CNN)快速开发的。训练CNN需要大量标记的数据,但是手动注释数据很困难。为了解放人力,近年来,发布了一些综合数据集。但是,它们仍然与真实场景不同,这导致在合成数据(源域)上训练模型无法在真实城市场景(目标域)上获得良好的性能。在本文中,我们提出了一种弱监督的对抗域自适应方法,以提高从合成数据到真实场景的分割性能,它由三个深层神经网络组成。检测与分割(DS)模型专注于检测对象并预测分割图;像素级域分类器(PDC)试图从哪些域中区分出图像特征;对象级域分类器(ODC)可以从域中区分出对象并预测对象类别。 PDC和ODC被视为区分符,而DS被视为生成器。通过对抗性学习,DS应该学习领域不变特征。在实验中,我们提出的方法在相同问题中产生了mIoU度量的新记录。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号