首页> 外文期刊>Pattern recognition letters >SceneAdapt: Scene-based domain adaptation for semantic segmentation using adversarial learning
【24h】

SceneAdapt: Scene-based domain adaptation for semantic segmentation using adversarial learning

机译:场景:使用对抗学习的语义分割的基于场景的域适应

获取原文
获取原文并翻译 | 示例

摘要

Semantic segmentation methods have achieved outstanding performance thanks to deep learning. Nevertheless, when such algorithms are deployed to new contexts not seen during training, it is necessary to collect and label scene-specific data in order to adapt them to the new domain using fine-tuning. This process is required whenever an already installed camera is moved or a new camera is introduced in a camera network due to the different scene layouts induced by the different viewpoints. To limit the amount of additional training data to be collected, it would be ideal to train a semantic segmentation method using labeled data already available and only unlabeled data coming from the new camera. We formalize this problem as a domain adaptation task and introduce a novel dataset of urban scenes with the related semantic labels. As a first approach to address this challenging task, we propose SceneAdapt, a method for scene adaptation of semantic segmentation algorithms based on adversarial learning. Experiments and comparisons with state-of-the-art approaches to domain adaptation highlight that promising performance can be achieved using adversarial learning both when the two scenes have different but points of view, and when they comprise images of completely different scenes.
机译:由于深入学习,语义分割方法取得了出色的表现。尽管如此,当这些算法部署到训练期间未见的新上下文时,有必要收集和标记特定的场景数据,以便使用微调将它们调整到新域。每当已经安装的相机移动或在相机网络中引入新相机时,需要该过程,因为不同的视点引起的不同场景布局,因此在相机​​网络中引入。为了限制要收集的额外培训数据的数量,使用已有标记的数据培训了语义分段方法是理想的,可以使用已标记的数据,并且仅来自新相机的未标记数据。我们将此问题正式化为域适应任务,并使用相关的语义标签介绍城市场景的新型数据集。作为一种解决这一具有挑战性任务的第一种方法,我们提出了一种基于对抗学习的语义分割算法场景适应方法。使用最先进的域适应方法的实验和比较强调,当两种场景具有不同但观点时,可以使用对抗性学习实现有希望的性能,以及它们包括完全不同场景的图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号