首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Hierarchical visualization of time-series data using switching linear dynamical systems
【24h】

Hierarchical visualization of time-series data using switching linear dynamical systems

机译:使用切换线性动力学系统对时间序列数据进行分层可视化

获取原文
获取原文并翻译 | 示例

摘要

We propose a novel visualization algorithm for high-dimensional time-series data. In contrast to most visualization techniques, we do not assume consecutive data points to be independent. The basic model is a linear dynamical system which can be seen as a dynamic extension of a probabilistic principal component model. A further extension to a particular switching linear dynamical system allows a representation of complex data onto multiple and even a hierarchy of plots. Using sensible approximations based on expectation propagation, the projections can be performed in essentially the same order of complexity as their static counterpart. We apply our method on a real-world data set with sensor readings from a paper machine.
机译:我们提出了一种高维时间序列数据的新型可视化算法。与大多数可视化技术相比,我们不假定连续的数据点是独立的。基本模型是线性动力学系统,可以看作是概率主成分模型的动态扩展。对特定开关线性动力系统的进一步扩展允许将复杂数据表示到多个甚至图表的层次结构上。使用基于期望传播的合理逼近,可以按照与静态对应物基本相同的复杂度顺序来执行它们。我们将方法应用于来自造纸机的传感器读数的真实数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号