首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >On using prototype reduction schemes and classifier fusion strategies to optimize kernel-based nonlinear subspace methods
【24h】

On using prototype reduction schemes and classifier fusion strategies to optimize kernel-based nonlinear subspace methods

机译:关于使用原型约简方案和分类器融合策略优化基于核的非线性子空间方法

获取原文
获取原文并翻译 | 示例

摘要

In kernel-based nonlinear subspace (KNS) methods, the length of the projections onto the principal component directions in the feature space, is computed using a kernel matrix, K, whose dimension is equivalent to the number of sample data points. Clearly this is problematic, especially, for large data sets. In this paper, we solve this problem by subdividing the data into smaller subsets, and utilizing a prototype reduction scheme (PRS) as a preprocessing module, to yield more refined representative prototypes. Thereafter, a classifier fusion strategy (CFS) is invoked as a postprocessing module, to combine the individual KNS classification results to derive a consensus decision. Essentially, the PRS is used to yield computational advantage, and the CFS, in turn, is used to compensate for the decreased efficiency caused by the data set division. Our experimental results demonstrate that the proposed mechanism significantly reduces the prototype extraction time as well as the computation time without sacrificing the classification accuracy. The results especially demonstrate a significant computational advantage for large data sets within a parallel processing philosophy.
机译:在基于核的非线性子空间(KNS)方法中,使用核矩阵K(其维等于样本数据点的数量)来计算在特征空间中主成分方向上的投影长度。显然,这是有问题的,尤其是对于大型数据集。在本文中,我们通过将数据细分为较小的子集并利用原型简化方案(PRS)作为预处理模块来解决此问题,以产生更精细的代表性原型。此后,将分类器融合策略(CFS)用作后处理模块,以合并各个KNS分类结果以得出共识决策。本质上,PRS用于产生计算优势,而CFS又用于补偿由数据集划分引起的效率下降。我们的实验结果表明,该机制显着减少了原型提取时间以及计算时间,同时又不影响分类的准确性。结果特别证明了在并行处理原理内对大型数据集的显着计算优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号