首页> 外文会议>AI 2003: Advances in Artificial Intelligence >On Using Prototype Reduction Schemes and Classifier Fusion Strategies to Optimize Kernel-Based Nonlinear Subspace Methods
【24h】

On Using Prototype Reduction Schemes and Classifier Fusion Strategies to Optimize Kernel-Based Nonlinear Subspace Methods

机译:利用原型约简方案和分类器融合策略优化基于核的非线性子空间方法

获取原文
获取原文并翻译 | 示例

摘要

In Kernel based Nonlinear Subspace (KNS) methods, the length of the projections onto the principal component directions in the feature space, is computed using a kernel matrix, K, whose dimension is equivalent to the number of sample data points. Clearly this is problematic, especially, for large data sets. To solve the problem, in [9] we earlier proposed a method of reducing the size of the kernel by invoking a Prototype Reduction Scheme (PRS) to reduce the data into a smaller representative subset, rather than define it in terms of the entire data set. In this paper we propose a new KNS classification method for further enhancing the efficiency and accuracy of the results presented in [9]. By sub-dividing the data into smaller subsets, we propose to employ a PRS as a pre-processing module, to yield more refined representative prototypes. Thereafter, a Classifier Fusion Strategies (CFS) is invoked as a post-processing module, so as to combine the individual KNS classification results to derive a consensus decision. Our experimental results demonstrate that the proposed mechanism significantly reduces the prototype extraction time as well as the computation time without sacrificing the classification accuracy. The results especially demonstrate that the computational advantage for large data sets is significant when a parallel programming philosophy is applied.
机译:在基于内核的非线性子空间(KNS)方法中,使用核矩阵K(其维等于样本数据点的数量)来计算特征空间中主成分方向上的投影长度。显然,这是有问题的,尤其是对于大型数据集。为了解决这个问题,我们在[9]中更早提出了一种通过调用原型缩减方案(PRS)将数据缩减为较小的代表性子集而不是根据整个数据进行定义的方法来减小内核大小的方法。组。在本文中,我们提出了一种新的KNS分类方法,以进一步提高[9]中提出的结果的效率和准确性。通过将数据细分为较小的子集,我们建议采用PRS作为预处理模块,以产生更精确的代表性原型。此后,将分类器融合策略(CFS)用作后处理模块,以便组合各个KNS分类结果以得出共识决策。我们的实验结果表明,该机制显着减少了原型提取时间以及计算时间,同时又不影响分类的准确性。结果尤其表明,当应用并行编程原理时,大数据集的计算优势非常明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号