首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >On utilizing search methods to select subspace dimensions for kernel-based nonlinear subspace classifiers
【24h】

On utilizing search methods to select subspace dimensions for kernel-based nonlinear subspace classifiers

机译:利用搜索方法为基于核的非线性子空间分类器选择子空间维数

获取原文
获取原文并翻译 | 示例

摘要

In kernel-based nonlinear subspace (KNS) methods, the subspace dimensions have a strong influence on the performance of the subspace classifier. In order to get a high classification accuracy, a large dimension is generally required. However, if the chosen subspace dimension is too large, it leads to a low performance due to the overlapping of the resultant subspaces and, if it is too small, it increases the classification error due to the poor resulting approximation. The most common approach is of an ad hoc nature, which selects the dimensions based on the so-called cumulative proportion computed from the kernel matrix for each class. We propose a new method of systematically and efficiently selecting optimal or near-optimal subspace dimensions for KNS classifiers using a search strategy and a heuristic function termed the overlapping criterion. The rationale for this function has been motivated in the body of the paper. The task of selecting optimal subspace dimensions is reduced to find the best ones from a given problem-domain solution space using this criterion as a heuristic function. Thus, the search space can be pruned to very efficiently find the best solution. Our experimental results demonstrate that the proposed mechanism selects the dimensions efficiently without sacrificing the classification accuracy.
机译:在基于内核的非线性子空间(KNS)方法中,子空间维数对子空间分类器的性能有很大影响。为了获得高分类精度,通常需要大尺寸。但是,如果选择的子空间维数太大,则会由于结果子空间的重叠而导致性能低下;如果选择的子空间维数太小,则会因不良的近似结果而增加分类误差。最常见的方法是临时性的,它根据从内核矩阵为每个类别计算的所谓累积比例来选择尺寸。我们提出了一种新方法,该方法使用搜索策略和称为重叠准则的启发式函数为KNS分类器系统且有效地选择最佳或接近最佳子空间维数。此功能的基本原理已在本文正文中提出。使用该准则作为试探函数,减少了选择最佳子空间维度的任务,从而从给定的问题域解决方案空间中找到最佳子空间。因此,可以修剪搜索空间以非常有效地找到最佳解决方案。我们的实验结果表明,提出的机制可以有效地选择尺寸,而不会影响分类的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号