首页> 外文期刊>IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics >On Using Prototype Reduction Schemes to Optimize Kernel-Based Fisher Discriminant Analysis
【24h】

On Using Prototype Reduction Schemes to Optimize Kernel-Based Fisher Discriminant Analysis

机译:基于原型约简方案的基于核的Fisher判别分析优化

获取原文
获取原文并翻译 | 示例

摘要

Fisher''s linear discriminant analysis (LDA) is a traditional dimensionality reduction method that has been proven to be successful for decades. Numerous variants, such as the kernel-based Fisher discriminant analysis (KFDA), have been proposed to enhance the LDA''s power for nonlinear discriminants. Although effective, the KFDA is computationally expensive, since the complexity increases with the size of the data set. In this correspondence, we suggest a novel strategy to enhance the computation for an entire family of the KFDAs. Rather than invoke the KFDA for the entire data set, we advocate that the data be first reduced into a smaller representative subset using a prototype reduction scheme and that the dimensionality reduction be achieved by invoking a KFDA on this reduced data set. In this way, data points that are ineffective in the dimension reduction and classification can be eliminated to obtain a significantly reduced kernel matrix $K$ without degrading the performance. Our experimental results demonstrate that the proposed mechanism dramatically reduces the computation time without sacrificing the classification accuracy for artificial and real-life data sets.
机译:Fisher的线性判别分析(LDA)是一种传统的降维方法,已被证明数十年来是成功的。已经提出了许多变体,例如基于核的Fisher判别分析(KFDA),以增强LDA对非线性判别的能力。尽管有效,但KFDA在计算上很昂贵,因为复杂度会随数据集的大小而增加。在此通信中,我们提出了一种新颖的策略来增强整个KFDA系列的计算能力。我们提倡不要首先使用原型缩减方案将数据缩减为较小的代表性子集,而不是针对整个数据集调用KFDA,并且应通过在此缩减的数据集上调用KFDA来实现降维。以此方式,可以消除在维数缩减和分类方面无效的数据点,以在不降低性能的情况下获得显着缩减的核矩阵$ K $。我们的实验结果表明,所提出的机制可在不牺牲人工和现实数据集分类精度的情况下,大大减少计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号