首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Human Pose Tracking in Monocular Sequence Using Multilevel Structured Models
【24h】

Human Pose Tracking in Monocular Sequence Using Multilevel Structured Models

机译:使用多层结构模型的单眼序列人姿跟踪

获取原文
获取原文并翻译 | 示例

摘要

Tracking human body poses in monocular video has many important applications. The problem is challenging in realistic scenes due to background clutter, variation in human appearance and self-occlusion. The complexity of pose tracking is further increased when there are multiple people whose bodies may inter-occlude. We proposed a three-stage approach with multi-level state representation that enables a hierarchical estimation of 3D body poses. Our method addresses various issues including automatic initialization, data association, self and inter-occlusion. At the first stage, humans are tracked as foreground blobs and their positions and sizes are coarsely estimated. In the second stage, parts such as face, shoulders and limbs are detected using various cues and the results are combined by a grid-based belief propagation algorithm to infer 2D joint positions. The derived belief maps are used as proposal functions in the third stage to infer the 3D pose using data-driven Markov chain Monte Carlo. Experimental results on several realistic indoor video sequences show that the method is able to track multiple persons during complex movement including sitting and turning movements with self and inter-occlusion.
机译:在单眼视频中跟踪人体姿势有许多重要的应用。由于背景杂乱,人的外观变化和自我遮挡,该问题在现实场景中具有挑战性。当有多个人的身体可能相互咬合时,姿势跟踪的复杂性会进一步增加。我们提出了一种具有多级状态表示的三阶段方法,该方法可以对3D人体姿势进行分层估计。我们的方法解决了各种问题,包括自动初始化,数据关联,自我和相互遮挡。在第一阶段,将人类作为前景斑点进行跟踪,并粗略估计其位置和大小。在第二阶段,使用各种线索检测面部,肩膀和四肢等部位,然后将结果通过基于网格的置信度传播算法进行组合,以推断2D关节位置。导出的置信度图在第三阶段用作提议函数,以使用数据驱动的马尔可夫链蒙特卡洛推断3D姿态。在几个现实的室内视频序列上的实验结果表明,该方法能够在复杂的运动中追踪多个人,包括自我和相互遮挡的坐姿和转弯动作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号