首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Model-Based 3D Hand Pose Estimation from Monocular Video
【24h】

Model-Based 3D Hand Pose Estimation from Monocular Video

机译:单眼视频的基于模型的3D手姿估计

获取原文
获取原文并翻译 | 示例

摘要

A novel model-based approach to 3D hand tracking from monocular video is presented. The 3D hand pose, the hand texture, and the illuminant are dynamically estimated through minimization of an objective function. Derived from an inverse problem formulation, the objective function enables explicit use of temporal texture continuity and shading information while handling important self-occlusions and time-varying illumination. The minimization is done efficiently using a quasi-Newton method, for which we provide a rigorous derivation of the objective function gradient. Particular attention is given to terms related to the change of visibility near self-occlusion boundaries that are neglected in existing formulations. To this end, we introduce new occlusion forces and show that using all gradient terms greatly improves the performance of the method. Qualitative and quantitative experimental results demonstrate the potential of the approach.
机译:提出了一种新颖的基于模型的单眼视频3D手跟踪方法。通过最小化目标函数,可以动态估算3D手势,手势和光源。该目标函数源自反问题公式,可在处理重要的自遮挡和随时间变化的照明时显式使用时间纹理连续性和阴影信息。使用拟牛顿法有效地完成了最小化,为此我们提供了目标函数梯度的严格推导。特别注意与现有公式中忽略的,与自闭塞边界附近的可见性变化有关的术语。为此,我们引入了新的遮挡力,并表明使用所有梯度项都可以大大改善该方法的性能。定性和定量的实验结果证明了该方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号