首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Bilayer Segmentation of Webcam Videos Using Tree-Based Classifiers
【24h】

Bilayer Segmentation of Webcam Videos Using Tree-Based Classifiers

机译:使用基于树的分类器对网络摄像头视频进行双层分割

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an automatic segmentation algorithm for video frames captured by a (monocular) webcam that closely approximates depth segmentation from a stereo camera. The frames are segmented into foreground and background layers that comprise a subject (participant) and other objects and individuals. The algorithm produces correct segmentations even in the presence of large background motion with a nearly stationary foreground. This research makes three key contributions: First, we introduce a novel motion representation, referred to as ȁC;motons,ȁD; inspired by research in object recognition. Second, we propose estimating the segmentation likelihood from the spatial context of motion. The estimation is efficiently learned by random forests. Third, we introduce a general taxonomy of tree-based classifiers that facilitates both theoretical and experimental comparisons of several known classification algorithms and generates new ones. In our bilayer segmentation algorithm, diverse visual cues such as motion, motion context, color, contrast, and spatial priors are fused by means of a conditional random field (CRF) model. Segmentation is then achieved by binary min-cut. Experiments on many sequences of our videochat application demonstrate that our algorithm, which requires no initialization, is effective in a variety of scenes, and the segmentation results are comparable to those obtained by stereo systems.
机译:本文提出了一种自动分割算法,用于(单目)网络摄像头捕获的视频帧,该算法非常接近于立体摄像机的深度分割。帧被分割为前景和背景层,其中包括主体(参与者)以及其他对象和个人。该算法即使在具有近乎静止的前景的大背景运动的情况下也能产生正确的分割。这项研究做出了三个关键贡献:首先,我们介绍了一种新颖的运动表示形式,称为ȁC; motons,ȁD;受物体识别研究启发。其次,我们建议从运动的空间上下文中估计分割的可能性。随机森林可以有效地了解这一估计。第三,我们介绍了基于树的分类器的一般分类法,该分类法有助于对几种已知分类算法进行理论和实验比较,并生成新的分类算法。在我们的双层分割算法中,通过条件随机场(CRF)模型融合了各种视觉线索,例如运动,运动上下文,颜色,对比度和空间先验。然后通过二进制最小割实现分割。在我们的视频聊天应用程序的许多序列上进行的实验表明,我们的算法无需初始化,可在各种场景中有效,并且分割结果可与立体声系统获得的结果相媲美。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号