首页> 外文期刊>Image Processing, IET >Deep detector classifier (DeepDC) for moving objects segmentation and classification in video surveillance
【24h】

Deep detector classifier (DeepDC) for moving objects segmentation and classification in video surveillance

机译:深度探测器分类器(Deadddc)用于移动对象分割和视频监控中的分类

获取原文
获取原文并翻译 | 示例

摘要

In this study, the authors present a new approach to segment and classify moving objects in video sequences by combining an unsupervised anomaly discovery framework called DeepSphere and generative adversarial networks. The proposed deep detector classifier employs and validates DeepSphere, which aims mainly to identify the anomalous cases in the spatial and temporal context in order to perform foreground objects segmentation. For post-processing, some morphological operations are considered to better segment and extract the desired objects. Finally, they take advantage of the power of generative models, which recognise the problem of semi-supervised learning as a specific missing data imputation task in order to classify the segmented objects. They evaluate the method with multiple datasets and the results confirm the effectiveness of the proposed approach, which achieves superior performance over the state-of-the-art methods having the capabilities of segmenting and classifying moving objects from videos surveillance.
机译:在这项研究中,作者通过组合叫做Deepsphere和生成的对抗网络的无监督异常发现框架,在视频序列中提出了一种新方法并在视频序列中进行分类。所提出的深度探测器分类器采用并验证Deepsphere,其主要旨在识别空间和时间上下文中的异常情况,以便执行前景对象分割。对于后处理,一些形态操作被认为是更好的段并提取所需的物体。最后,他们利用了生成模型的力量,这将半监督学习的问题识别为特定的缺失数据归纳任务,以便对分段对象进行分类。它们评估了多个数据集的方法,结果证实了所提出的方法的有效性,这实现了具有从视频监控中分段和分类移动物体的能力的最先进方法的卓越性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号