【24h】

Modeling Natural Images Using Gated MRFs

机译:使用门控MRF对自然图像建模

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a Markov Random Field for real-valued image modeling that has two sets of latent variables. One set is used to gate the interactions between all pairs of pixels, while the second set determines the mean intensities of each pixel. This is a powerful model with a conditional distribution over the input that is Gaussian, with both mean and covariance determined by the configuration of latent variables, which is unlike previous models that were restricted to using Gaussians with either a fixed mean or a diagonal covariance matrix. Thanks to the increased flexibility, this gated MRF can generate more realistic samples after training on an unconstrained distribution of high-resolution natural images. Furthermore, the latent variables of the model can be inferred efficiently and can be used as very effective descriptors in recognition tasks. Both generation and discrimination drastically improve as layers of binary latent variables are added to the model, yielding a hierarchical model called a Deep Belief Network.
机译:本文介绍了一种用于实值图像建模的马尔可夫随机场,它具有两组潜在变量。一组用于控制所有像素对之间的交互,而第二组确定每个像素的平均强度。这是一个功能强大的模型,在输入上具有条件分布,即高斯分布,均值和协方差均由潜变量的配置决定,这与以前的模型不同,之前的模型仅限于使用具有固定均值或对角协方差矩阵的高斯。由于灵活性的提高,在对高分辨率自然图像进行无限制分布训练后,此门控MRF可以生成更逼真的样本。此外,可以有效地推断模型的潜在变量,并且可以将其用作识别任务中非常有效的描述符。随着将二进制潜在变量的层添加到模型中,生成和判别力都得到了极大的改善,从而产生了称为“深层信任网络”的层次模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号