首页> 外文期刊>Pattern Analysis and Machine Intelligence, IEEE Transactions on >Multi-Commodity Network Flow for Tracking Multiple People
【24h】

Multi-Commodity Network Flow for Tracking Multiple People

机译:跟踪多人的多商品网络流

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a multi-commodity network flow problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame-to-frame. Furthermore, our algorithm lends itself to a real-time implementation. We validate our approach on three publicly available datasets that contain long and complex sequences, the APIDIS basketball dataset, the ISSIA soccer dataset, and the PETS'09 pedestrian dataset. We also demonstrate its performance on a newer basketball dataset that features complete world championship basketball matches. In all cases, our approach preserves identity better than state-of-the-art tracking algorithms.
机译:在本文中,我们表明跟踪路径可能相交的多个人可以被表述为多商品网络流问题。我们提出的框架旨在利用图像外观提示来防止身份切换。即使仅在遥远的时间间隔提供此类提示,我们的方法仍然有效。这与许多当前的方法不同,后者依赖于外观是否可以逐帧使用。此外,我们的算法适合实时实施。我们在三个包含长而复杂序列的公开可用数据集,APIDIS篮球数据集,ISSIA足球数据集和PETS'09行人数据集上验证了我们的方法。我们还将在更新的篮球数据集上展示其性能,该数据集具有完整的世界冠军篮球比赛信息。在所有情况下,我们的方法都比最新的跟踪算法更好地保留身份。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号