首页> 外文期刊>IEEE Transactions on Image Processing >Tracking-by-Counting: Using Network Flows on Crowd Density Maps for Tracking Multiple Targets
【24h】

Tracking-by-Counting: Using Network Flows on Crowd Density Maps for Tracking Multiple Targets

机译:逐次计数:使用人群密度映射上的网络流程用于跟踪多个目标

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art multi-object tracking (MOT) methods follow the tracking-by-detection paradigm, where object trajectories are obtained by associating per-frame outputs of object detectors. In crowded scenes, however, detectors often fail to obtain accurate detections due to heavy occlusions and high crowd density. In this paper, we propose a new MOT paradigm, tracking-by-counting, tailored for crowded scenes. Using crowd density maps, we jointly model detection, counting, and tracking of multiple targets as a network flow program, which simultaneously finds the global optimal detections and trajectories of multiple targets over the whole video. This is in contrast to prior MOT methods that either ignore the crowd density and thus are prone to errors in crowded scenes, or rely on a suboptimal two-step process using heuristic density-aware point-tracks for matching targets. Our approach yields promising results on public benchmarks of various domains including people tracking, cell tracking, and fish tracking.
机译:最先进的多对象跟踪(MOT)方法遵循跟踪逐个检测范式,其中通过将对象检测器的每个帧输出相关联获得对象轨迹。然而,在拥挤的场景中,由于重闭合和高人群密度,探测器通常无法获得准确的检测。在本文中,我们提出了一种新的MOT范式,逐步追踪,为拥挤的场景量身定制。使用人群密度图,我们共同模型检测,计数和跟踪多个目标作为网络流程程序,同时找到整个视频上的多个目标的全局最佳检测和轨迹。这与先前的MOT方法相反,忽略人群密度,因此在拥挤的场景中容易出错,或者使用用于匹配目标的启发式密度感知点轨道依赖于次优的两步过程。我们的方法在包括人们跟踪,细胞跟踪和鱼追踪的各个领域的公共基准上产生了有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号