首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Fusing Crowd Density Maps and Visual Object Trackers for People Tracking in Crowd Scenes
【24h】

Fusing Crowd Density Maps and Visual Object Trackers for People Tracking in Crowd Scenes

机译:融合人群密度图和视觉对象跟踪器以在人群场景中进行人跟踪

获取原文

摘要

While visual tracking has been greatly improved over the recent years, crowd scenes remain particularly challenging for people tracking due to heavy occlusions, high crowd density, and significant appearance variation. To address these challenges, we first design a Sparse Kernelized Correlation Filter (S-KCF) to suppress target response variations caused by occlusions and illumination changes, and spurious responses due to similar distractor objects. We then propose a people tracking framework that fuses the S-KCF response map with an estimated crowd density map using a convolutional neural network (CNN), yielding a refined response map. To train the fusion CNN, we propose a two-stage strategy to gradually optimize the parameters. The first stage is to train a preliminary model in batch mode with image patches selected around the targets, and the second stage is to fine-tune the preliminary model using the real frame-by-frame tracking process. Our density fusion framework can significantly improves people tracking in crowd scenes, and can also be combined with other trackers to improve the tracking performance. We validate our framework on two crowd video datasets.
机译:近年来,尽管视觉跟踪已得到很大改善,但由于重遮挡,人群密度高和外观变化显着,人群场景对于人跟踪仍然特别具有挑战性。为了解决这些挑战,我们首先设计了一个稀疏核相关滤波器(S-KCF),以抑制由遮挡和照明变化引起的目标响应变化,以及由于类似干扰对象导致的虚假响应。然后,我们提出一个人员跟踪框架,该框架使用卷积神经网络(CNN)将S-KCF响应图与估计的人群密度图融合在一起,从而生成精炼的响应图。为了训练融合CNN,我们提出了两阶段策略来逐步优化参数。第一阶段是在批处理模式下训练初步模型,并在目标周围选择图像补丁,第二阶段是使用实际的逐帧跟踪过程微调初步模型。我们的密度融合框架可以显着改善人群场景中的人员跟踪,也可以与其他跟踪器结合使用以提高跟踪性能。我们在两个人群视频数据集上验证了我们的框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号