首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Tracking People in a Mobile Robot From 2D LIDAR Scans Using Full Convolutional Neural Networks for Security in Cluttered Environments
【2h】

Tracking People in a Mobile Robot From 2D LIDAR Scans Using Full Convolutional Neural Networks for Security in Cluttered Environments

机译:使用全卷积神经网络从二维LIDAR扫描中跟踪移动机器人中的人员以确保混乱环境中的安全

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Tracking people has many applications, such as security or safe use of robots. Many onboard systems are based on Laser Imaging Detection and Ranging (LIDAR) sensors. Tracking peoples' legs using only information from a 2D LIDAR scanner in a mobile robot is a challenging problem because many legs can be present in an indoor environment, there are frequent occlusions and self-occlusions, many items in the environment such as table legs or columns could resemble legs as a result of the limited information provided by two-dimensional LIDAR usually mounted at knee height in mobile robots, etc. On the other hand, LIDAR sensors are affordable in terms of the acquisition price and processing requirements. In this article, we describe a tool named PeTra based on an off-line trained full Convolutional Neural Network capable of tracking pairs of legs in a cluttered environment. We describe the characteristics of the system proposed and evaluate its accuracy using a dataset from a public repository. Results show that PeTra provides better accuracy than Leg Detector (LD), the standard solution for Robot Operating System (ROS)-based robots.
机译:跟踪人员具有许多应用程序,例如安全性或安全使用机器人。许多车载系统均基于激光成像检测与测距(LIDAR)传感器。仅使用来自移动机器人中2D LIDAR扫描仪的信息来跟踪人们的腿部是一个具有挑战性的问题,因为室内环境中可能会出现许多腿部,经常发生咬合和自我咬合,环境中的许多物品例如桌腿或由于二维LIDAR通常安装在膝关节高度处在移动机器人等中,因此有限的信息会导致列类似腿。另一方面,LIDAR传感器在购置价格和处理要求方面都可以承受。在本文中,我们基于离线训练的完整卷积神经网络描述了一个名为PeTra的工具,该工具能够在混乱的环境中跟踪双腿。我们描述了提出的系统的特征,并使用来自公共存储库的数据集评估了其准确性。结果表明,PeTra提供了比基于基于机器人操作系统(ROS)的机器人标准解决方案“腿部检测器(LD)”更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号