首页> 外文期刊>IEEE Transactions on Pattern Analysis and Machine Intelligence >Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking
【24h】

Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking

机译:基于半监督的基于张量的图嵌入学习及其在视觉判别跟踪中的应用

获取原文
获取原文并翻译 | 示例

摘要

An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
机译:适用于对象外观变化的外观模型对于可视对象跟踪至关重要。在本文中,我们将图像块视为保留原始图像结构的二阶张量。我们设计了两个图形来表征对象和背景的张量样本的固有局部几何结构。图嵌入用于减小张量的维数,同时保留图的结构。然后,构造判别式嵌入空间。我们证明了找到用于将原始张量样本映射到基于张量的图嵌入空间的变换矩阵的两个命题。为了在嵌入空间中对更多判别信息进行编码,我们提出了一种基于转移学习的半监督策​​略,以迭代地调整嵌入空间,以便将早期获取的判别信息转移到该嵌入空间中。我们将提出的基于半监督的基于张量的图嵌入学习算法应用于视觉跟踪。新的跟踪算法可在跟踪过程中捕获对象的外观特征,并使用粒子滤波器估计最佳的对象状态。 CVPR 2013基准数据集的实验结果证明了所提出跟踪算法的有效性。

著录项

  • 来源
  • 作者单位

    CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;

    CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;

    CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;

    CAS Center for Excellence in Brain Science and Intelligence Technology, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China;

    Department of Computer Science and Information Systems, Birkbeck College, Malet Street, London, United Kingdom;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Tensile stress; Visualization; Analytical models; Algorithm design and analysis; Adaptation models; Object tracking; Semisupervised learning;

    机译:拉伸应力;可视化;分析模型;算法设计与分析;适应模型;对象跟踪;半监督学习;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号