首页> 外文期刊>Neurocomputing >Dimensionality reduction using graph-embedded probability-based semi-supervised discriminant analysis
【24h】

Dimensionality reduction using graph-embedded probability-based semi-supervised discriminant analysis

机译:使用基于图嵌入概率的半监督判别分析进行降维

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic semi-supervised discriminant analysis (PSDA) is a recently proposed semi-supervised dimensionality reduction approach. It quantifies class membership probability to each unlabeled sample by using a well-designed soft assignment technique. Then discriminant analysis is performed over both labeled and unlabeled data which bears an analogy to the Fisher criterion. However, PSDA mainly focuses on discriminative information hidden in unlabeled data and ignores the local geometric information which is critical to reveal the intrinsic distribution of data points, especially for face image data. In this paper, we develop a graph-based semi-supervised learning method based on PSDA, termed as graph-embedded probability-based semi-supervised discriminant analysis (GPSDA) for dimensionality reduction. By introducing a similarity measurement of fuzzy sets to investigate the inexact class information of unlabeled data, an adjacency graph is modeled based on both neighborhood structure and category information, which is more relevant to classification compared with the unsupervised graph constructed in traditional graph-based semi-supervised dimensionality reduction technique. Since more information is learnt from unlabeled data, GPSDA is expected to enhance performance in classification task. We present experimental evidence on face and facial expression recognition suggesting that our algorithm is able to use unlabeled data effectively.
机译:概率半监督判别分析(PSDA)是最近提出的半监督降维方法。通过使用精心设计的软分配技术,它可以量化每个未标记样本的类成员资格概率。然后,对标记和未标记的数据进行判别分析,这类似于Fisher准则。但是,PSDA主要关注隐藏在未标记数据中的区分性信息,而忽略了局部几何信息,这对于揭示数据点的固有分布至关重要,尤其是对于面部图像数据而言。在本文中,我们开发了一种基于PSDA的基于图的半监督学习方法,称为基于图嵌入的基于概率的半监督判别分析(GPSDA),用于降维。通过引入模糊集的相似性度量来研究未标记数据的不精确类别信息,基于邻域结构和类别信息对邻接图进行建模,与传统基于图的半监督中构造的无监督图相比,该邻接图与分类更相关监督降维技术。由于可以从未标记的数据中获取更多信息,因此GPSDA有望增强分类任务的性能。我们提供了关于面部和面部表情识别的实验证据,表明我们的算法能够有效使用未标记的数据。

著录项

  • 来源
    《Neurocomputing》 |2014年第22期|283-296|共14页
  • 作者

    Wei Li; Qiuqi Ruan; Jun Wan;

  • 作者单位

    Institute of Information Science, Beijing Jiaotong University, Beijing, PR China Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, PR China;

    Institute of Information Science, Beijing Jiaotong University, Beijing, PR China Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, PR China;

    Institute of Information Science, Beijing Jiaotong University, Beijing, PR China Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing, PR China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Semi-supervised dimensionality reduction; Feature extraction; Discriminant analysis; Graph embedding; Class membership probability; Face recognition; Facial expression recognition;

    机译:半监督降维;特征提取;判别分析;图形嵌入;类成员资格概率;人脸识别;面部表情识别;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号