首页> 外文期刊>The Visual Computer >Structural sparse representation-based semi-supervised learning and edge detection proposal for visual tracking
【24h】

Structural sparse representation-based semi-supervised learning and edge detection proposal for visual tracking

机译:基于结构稀疏表示的半监督学习和边缘检测视觉跟踪方案

获取原文
获取原文并翻译 | 示例

摘要

In discriminative tracking, lots of tracking methods easily suffer from changes of pose, illumination and occlusion. To deal with this problem, we propose a novel object tracking method using structural sparse representation-based semi-supervised learning and edge detection. First, the object appearance model is constructed by extracting sparse code features on different layers to exploit local information and holistic information. To utilize unlabelled samples information, the semi-supervised learning is introduced and a classifier is trained which is used to measure candidates. In addition, an auxiliary positive sample set is maintained to improve the performance of the classifier. We subsequently adopt an edge detection to alleviate the error accumulation based on the ranking results from the learned classifier. Finally, the proposed method is implemented under theBayesian inference framework. Both the proposed tracker and several current trackers are tested on some challenging videos, where the target objects undergo pose change, illumination and occlusion. The experimental results demonstrate that the proposed tracker outperforms the other state-of-the art methods in terms of effectiveness and robustness.
机译:在判别式跟踪中,许多跟踪方法很容易遭受姿势,照明和遮挡的改变。为了解决这个问题,我们提出了一种新的基于结构稀疏表示的半监督学习和边缘检测的目标跟踪方法。首先,通过提取不同层上的稀疏代码特征以利用本地信息和整体信息来构造对象外观模型。为了利用未标记的样本信息,引入了半监督学习,并训练了用于测量候选者的分类器。另外,维持辅助阳性样本集以改善分类器的性能。随后,基于学习到的分类器的排序结果,我们采用边缘检测来减轻错误累积。最后,该方法是在贝叶斯推理框架下实现的。拟议的跟踪器和几种当前的跟踪器都在一些具有挑战性的视频上进行了测试,在这些视频中,目标对象的姿势发生变化,光照和遮挡。实验结果表明,所提出的跟踪器在有效性和鲁棒性方面均优于其他最新技术。

著录项

  • 来源
    《The Visual Computer》 |2017年第9期|1169-1184|共16页
  • 作者单位

    Beijing Inst Technol, Sch Comp Sci, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Beijing Inst Technol, Sch Comp Sci, Beijing Key Lab Intelligent Informat Technol, Beijing 100081, Peoples R China;

    Univ Essex, Sch Comp Sci & Elect Engn, Wivenhoe Pk, Colchester CO4 3SQ, Essex, England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Structural sparse representation; Semi-supervised learning; Edge detection proposal; Object tracking;

    机译:结构稀疏表示;半监督学习;边缘检测方案;目标跟踪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号