首页> 外文OA文献 >Semi-supervised tensor-based graph embedding learning and its application to visual discriminant tracking
【2h】

Semi-supervised tensor-based graph embedding learning and its application to visual discriminant tracking

机译:基于半监督的张量图嵌入学习及其在视觉判别跟踪中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An appearance model adaptable to changes in object appearance is critical in visual object tracking. Inudthis paper, we treat an image patch as a 2-order tensor which preserves the original image structure. We designudtwo graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and theudbackground. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure ofudthe graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding theudtransformation matrices which are used to map the original tensor samples to the tensor-based graph embeddingudspace. In order to encode more discriminant information in the embedding space, we propose a transfer-learningbasedudsemi-supervised strategy to iteratively adjust the embedding space into which discriminative informationudobtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graphudembedding learning algorithm to visual tracking. The new tracking algorithm captures an object’s appearanceudcharacteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental resultsudon the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
机译:适用于对象外观变化的外观模型对于可视对象跟踪至关重要。在本文中,我们将图像块视为保留原始图像结构的2阶张量。我们设计 udtwo图来表征对象和 udbackground的张量样本的固有局部几何结构。图嵌入用于减小张量的维数,同时保留图的结构。然后,构造判别式嵌入空间。我们证明了用于找到 udtransformation矩阵的两个命题,这些矩阵用于将原始张量样本映射到基于张量的图嵌入 udspace。为了在嵌入空间中对更多的判别信息进行编码,我们提出了一种基于转移学习的 udsemi监督策略,以迭代地调整嵌入空间,将先前获得的判别信息转移到该嵌入空间中。我们将提出的基于半监督的基于张量的图去嵌入学习算法应用于视觉跟踪。新的跟踪算法可以在跟踪过程中捕获对象的外观特征,并使用粒子过滤器来估计最佳的对象状态。 CVPR 2013基准数据集的实验结果证明了所提出跟踪算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号