首页> 外文期刊>Parallel Algorithms and Applications >Optimal route selection based on Monte Carlo method and adaptive amoeba algorithm under uncertain environment
【24h】

Optimal route selection based on Monte Carlo method and adaptive amoeba algorithm under uncertain environment

机译:不确定环境下基于蒙特卡罗方法和自适应变形虫算法的最优路径选择

获取原文
获取原文并翻译 | 示例

摘要

The fuzzy optimal path under uncertainty is one of the basic network optimization problems. Considering the uncertain environment, many fuzzy numbers are used to represent the edge weights, such as interval number and triangular fuzzy number. Then, these fuzzy numbers are converted to real numbers directly. This converting makes the optimal path the shortest path selection problem. However, much information of uncertainty get lost when converting fuzzy numbers to real numbers. In order to ensure all the origan data complete, in this paper, a fuzzy optimal path solving model based on the Monte Carlo method and adaptive amoeba algorithm is proposed. In Monte Carlo process, a random number which belongs to the fuzzy number is generated. Then, Physarum polycephalum algorithm is used to solve the shortest path every time and record the result. After many times calculation, many shortest paths have been found and recorded. At last, by analysing the characters of all the results, the optimal path can be selected. Several numerical examples are given to illustrate the effectiveness of the proposed method, the results show that the proposed method can deal with the fuzzy optimal path problems effectively.
机译:不确定条件下的模糊最优路径是网络优化的基本问题之一。考虑到不确定的环境,许多模糊数被用来表示边缘权重,例如区间数和三角模糊数。然后,将这些模糊数直接转换为实数。这种转换使最佳路径成为最短路径选择问题。但是,将模糊数转换为实数时,会丢失很多不确定性信息。为了保证所有原始数据的完整性,提出了一种基于蒙特卡罗方法和自适应变形虫算法的模糊最优路径求解模型。在蒙特卡洛过程中,生成属于模糊数的随机数。然后,使用Physarum polycephalum算法每次求解最短路径并记录结果。经过多次计算,找到并记录了许多最短路径。最后,通过分析所有结果的特征,可以选择最佳路径。数值算例表明了该方法的有效性,结果表明该方法可以有效地解决模糊最优路径问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号