首页> 外文期刊>Optimization and Engineering >Subspace methods for large scale nonlinear equations and nonlinear least squares
【24h】

Subspace methods for large scale nonlinear equations and nonlinear least squares

机译:大规模非线性方程和非线性最小二乘法的子空间方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study large scale nonlinear systems of equations and nonlinear least square problems. We present subspace methods for solving these two special optimization problems. The subspace methods have the characteristic to force the next iteration in a low dimensional subspace. The main technique is to construct subproblems in low dimensions so that the computation cost in each iteration can be reduced comparing to standard approaches. The subspace approach offers a possible way to handle large scale optimization problems which are now attracting more and more attention. Actually, quite a few known techniques can be viewed as subspace methods, such as conjugate gradient method, limited memory quasi-Newton method, projected gradient method, and null space method.
机译:在本文中,我们研究了大型非线性方程组和非线性最小二乘问题。我们提出了用于解决这两个特殊优化问题的子空间方法。子空间方法具有强制在低维子空间中进行下一次迭代的特性。主要技术是构建低维子问题,以便与标准方法相比可以减少每次迭代中的计算成本。子空间方法提供了一种可能的方法来处理大规模优化问题,这些问题现在正受到越来越多的关注。实际上,相当多的已知技术可以看作是子空间方法,例如共轭梯度法,有限存储拟牛顿法,投影梯度法和零空间法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号