首页> 外文期刊>Nonlinear Differential Equations and Applications NoDEA >{W^{1,1}_0} -solutions for elliptic problems having gradient quadratic lower order terms
【24h】

{W^{1,1}_0} -solutions for elliptic problems having gradient quadratic lower order terms

机译:{W ^ {1,1} _0}-具有梯度二次低阶项的椭圆问题的解

获取原文
获取原文并翻译 | 示例

摘要

In this paper we deal with solutions of problems of the type $$left{begin{array}{ll}-{rm div} Big(frac{a(x)Du}{(1+|u|)^2} Big)+u = frac{b(x)|Du|^2}{(1+|u|)^3} +f quad &{rm in} , Omega, u=0 &{rm on} partial , Omega, end{array} right.$$where ({0 < alpha leq a(x) leq beta, |b(x)| leq gamma, gamma > 0, f in L^2 (Omega)}) and Ω is a bounded subset of ({mathbb{R}^N}) with N ≥ 3. We prove the existence of at least one solution for such a problem in the space ({W_{0}^{1, 1}(Omega) cap L^{2}(Omega)}) if the size of the lower order term satisfies a smallness condition when compared with the principal part of the operator. This kind of problems naturally appears when one looks for positive minima of a functional whose model is: $$J (v) = frac{alpha}{2} int_{Omega}frac{|D v|^2}{(1 + |v|)^{2}} + frac{12}{int_{Omega}|v|^2} - int_{Omega}f,v , quad f in L^2(Omega),$$where in this case a(x) ≡ b(x) = α > 0. Mathematics Subject Classification 35D30 35J65 35J70 Keywords Nonlinear elliptic equations ({W_{0}^{1, 1} (Omega)}) solutions Quadratic gradient terms Page %P Close Plain text Look Inside Reference tools Export citation EndNote (.ENW) JabRef (.BIB) Mendeley (.BIB) Papers (.RIS) Zotero (.RIS) BibTeX (.BIB) Add to Papers Other actions Register for Journal Updates About This Journal Reprints and Permissions Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn Related Content Supplementary Material (0) References (16) References1.Arcoya D., Boccardo L., Leonori T., Porretta A.: Some elliptic problems with singular and gradient quadratic lower order terms. J. Diff. Equ. 249, 2771–2795 (2010)MathSciNetCrossRefMATH2.Boccardo, L.: Some nonlinear Dirichlet problems in L 1 involving lower order terms in divergence form. Progress in elliptic and parabolic partial differential equations (Capri, 1994), pp. 43–57. Pitman research notes in mathematics series, vol. 350. Longman, Harlow (1996)3.Boccardo L.: Dirichlet problems with singular and gradient quadratic lower order terms.. ESAIM: Control Optim. Calc. Var. 14, 411–426 (2008)MathSciNetCrossRefMATH4.Boccardo L.: The Fatou lemma approach to the existence in quasilinear elliptic equations with natural growth terms. Complex Var. Elliptic Equ. 55, 445–453 (2010)MathSciNetCrossRefMATH5.Boccardo L.: A contribution to the theory of quasilinear elliptic equations and application to the minimization of integral functionals. Milan J. Math. 79, 193–206 (2011)MathSciNetCrossRefMATH6.Boccardo L., Brezis H.: Some remarks on a class of elliptic equations with degenerate coercivity. Boll. Unione Mat. Ital. 6, 521–530 (2003)MathSciNetMATH7.Boccardo L., Croce G., Orsina L.: ({W^{1,1}_0}) minima of non coercive functionals. Atti Accad. Naz. Lincei 22, 513–523 (2011)MathSciNetCrossRefMATH8.Boccardo L., Croce G., Orsina L.: Nonlinear degenerate elliptic problems with ({W^{1,1}_{0}}) solutions. Manuscripta Math. 137, 419–439 (2012)MathSciNetCrossRefMATH9.Boccardo L., Dall’Aglio A., Orsina L.: Existence and regularity results for some elliptic equations with degenerate coercivity. Atti Sem. Mat. Fis. Univ. Modena 46, 51–81 (1998)MathSciNetMATH10.Boccardo L., Gallouet T.: Nonlinear elliptic equations with right hand side measures. Comm. PDE 17, 641–655 (1992)MathSciNetCrossRefMATH11.Boccardo L., Murat F., Puel J.-P.: Existence de solutions non bornées pour certaines équations quasi-linéaires. Portugaliae Math. 41, 507–534 (1982)MathSciNetMATH12.Boccardo L., Murat F., Puel J.-P.: L ∞-estimate for nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal. 23, 326–333 (1992)MathSciNetCrossRefMATH13.Boccardo L., Segura S., Trombetti C.: Existence of bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term. J. Math. Pures et Appl. 80, 919–940 (2001)CrossRefMATH14.Porretta A.: Existence for elliptic equations in L 1 having lower order terms with natural growth. Portugaliae Math. 57, 179–190 (2000)MathSciNetMATH15.Porretta A., Segura S.: Nonlinear elliptic equations having a gradient term with natural growth. J. Math. Pures Appl. 85, 465–492 (2006)MathSciNetCrossRefMATH16.Stampacchia G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15(1), 189–258 (1965)MathSciNetCrossRefMATH About this Article Title ({W^{1,1}_0}) -solutions for elliptic problems having gradient quadratic lower order terms Journal Nonlinear Differential Equations and Applications NoDEA Volume 20, Issue 6 , pp 1741-1757 Cover Date2013-12 DOI 10.1007/s00030-013-0228-z Print ISSN 1021-9722 Online ISSN 1420-9004 Publisher Springer Basel Additional Links Register for Journal Updates Editorial Board About This Journal Manuscript Submission Topics Analysis Keywords 35D30 35J65 35J70 Nonlinear elliptic equations $${W_{0}^{1, 1} (Omega)}$$ solutions Quadratic gradient terms Authors David Arcoya (1) Lucio Boccardo (2) Tommaso Leonori (3) Author Affiliations 1. Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071, Granada, Spain 2. Dipartimento di Matematica, Università di Roma “La Sapienza”, Piazza A. Moro 2, 00185, Rome, Italy 3. Departamento di Matematicas, Universidad Carlos III, Avda. de la Universidad 30, 28911, Leganés Madrid, Spain Continue reading... To view the rest of this content please follow the download PDF link above.
机译:在本文中,我们将处理$$ left {begin {array} {ll}-{rm div}类型Big(frac {a(x)Du} {(1+ | u |)^ 2} Big类型的问题的解决方案)+ u = frac {b(x)| Du | ^ 2} {(1+ | u |)^ 3} + f quad&{rm in},Omega,u = 0&{rm on}部分,Omega, end {array} right。$$其中({0 0,L ^ 2(Omega)中的f}})和Ω是有界的({mathbb {R} ^ N})的子集且N≥3.我们证明了在空间({W_ {0} ^ {1,1}(Omega)cap L ^ {2}(Ω)}),如果与运算符的主要部分相比,低阶项的大小满足小条件。当人们寻找某个模型的正最小值时,这种问题自然就会出现:$$ J(v)= frac {alpha} {2} int_ {Omega} frac {| D v | ^ 2} {(1 + | v |)^ {2}} + frac {12} {int_ {Omega} | v | ^ 2}-int_ {Omega} f,v,L ^ 2(Omega)中的quad f,$$ a(x)≡b(x)=α>0。数学学科分类35D30 35J65 35J70关键字非线性椭圆方程({W_ {0} ^ {1,1}(Omega)})解决方案二次梯度项%P关闭纯文本“查看内部”参考工具导出引证EndNote(.ENW)JabRef(.BIB)Mendeley(.BIB)论文(.RIS)Zotero(.RIS)BibTeX(.BIB)添加到论文其他操作注册期刊更新关于本期刊转载和许可分享在Facebook上共享此内容在Twitter上共享此内容在LinkedIn上共享此内容相关内容补充材料(0)参考(16)参考1.Arcoya D.,Boccardo L.,Leonori T.,Porretta A .:奇异和梯度二次低阶项的一些椭圆问题。 J.迪夫等式249,2771–2795(2010)MathSciNetCrossRefMATH2.Boccardo,L .: L 1中的某些非线性Dirichlet问题涉及发散形式的低阶项。椭圆和抛物线偏微分方程的进展(卡普里岛,1994年),第43-57页。皮特曼在数学系列研究笔记,卷。 350. Longman,Harlow(1996)3。Boccardo L .:奇异和梯度二次低阶项的Dirichlet问题。ESAIM:控制最优。计算变体14,14,411–426(2008)MathSciNetCrossRefMATH4.Boccardo L .:具有自然增长项的拟线性椭圆方程中存在的法头引理。复合变量椭圆方程55,445–453(2010)MathSciNetCrossRefMATH5.Boccardo L .:对拟线性椭圆方程的理论及其在最小化积分泛函上的应用。米兰J. 79,193–206(2011)MathSciNetCrossRefMATH6.Boccardo L.,Brezis H .:关于一类具有退化矫顽力的椭圆方程的一些评论。铃。联盟垫。意大利文6,521–530(2003)MathSciNetMATH7。Boccardo L.,Croce G.,Orsina L.:({W^{1,1}_0})极小非强制功能。 Atti Accad。纳兹Lincei 22,513–523(2011)MathSciNetCrossRefMATH8.Boccardo L.,Croce G.,Orsina L .:具有({W ^ {1,1} _ {0}})解的非线性退化椭圆问题。手稿数学。 137,419–439(2012)MathSciNetCrossRefMATH9.Boccardo L.,Dall’Aglio A.,Orsina L .:某些具有简并矫顽力的椭圆方程的存在性和正则性结果。 Atti Sem。垫。 Fis。大学摩德纳46,51-81(1998)MathSciNetMATH10.Boccardo L.,Gallouet T .:带有右手边测度的非线性椭圆方程。通讯PDE 17,641–655(1992)MathSciNetCrossRefMATH11.Boccardo L.,Murat F.,Puel J.-P .:非出生者的存在必定会导致准linéaires。葡萄牙语数学。 41,507–534(1982)MathSciNetMATH12.Boccardo L.,Murat F.,Puel J.-P .:非线性椭圆型偏微分方程的L∞估计及其在存在结果中的应用。 SIAM J. Math。肛门23,326–333(1992)MathSciNetCrossRefMATH13.Boccardo L.,Segura S.,Trombetti C .:存在一类具有二次梯度项的拟线性椭圆问题的有界和无界解的存在。 J.数学Pures et Appl。 80,919–940(2001)CrossRefMATH14.Porretta A .: L 1中椭圆方程的存在,该方程具有自然生长的低阶项。葡萄牙语数学。 57,179–190(2000)MathSciNetMATH15.Porretta A.,Segura S .:非线性椭圆方程,其梯度项具有自然增长。 J.数学Pures Appl。 85,465–492(2006)MathSciNetCrossRefMATH16.Stampacchia G .:第2阶奥德雷系数系数不连续。安研究所Fourier(Grenoble)15(1),189–258(1965)MathSciNetCrossRefMATH关于本文标题({W ^ {1,1} _0})-具有梯度二次低阶项的椭圆问题的解决方案期刊非线性微分方程和应用NoDEA第20卷,第6期,第1741-1757页覆盖日期2013-12 DOI 10.1007 / s00030-013-0228-z打印ISSN 1021-9722在线ISSN 1420-9004发行人Springer Basel其他链接注册期刊更新编辑委员会关于期刊的投稿主题分析关键字35D30 35J65 35J70非线性椭圆方程$$ {W_ {0} ^ {1,1}(Omega)} $$解决方案二次梯度项作者David Arcoya(1)Lucio Boccardo(2)Tommaso Leonori(3)隶属关系1.西班牙格拉纳达大学西恩西亚斯分校的AnálisisMatemático部门,Fuentenueva S / N校区,18071,西班牙格拉纳达2. Matematic分部a,罗马大学“ La Sapienza”,A。Moro广场2号,00185,意大利罗马,意大利3. Carlos III大学,Matematicas部,Avda。 de la Universidad 30,28911,LeganésMadrid,西班牙继续阅读...要查看本内容的其余部分,请点击上面的下载PDF链接。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号