首页> 外文期刊>New Generation Computing >Part 2: Multilayer Perceptron and Natural Gradient Learning
【24h】

Part 2: Multilayer Perceptron and Natural Gradient Learning

机译:第2部分:多层感知器和自然梯度学习

获取原文
获取原文并翻译 | 示例

摘要

Since the perceptron was developed for learning to classify input patterns, there have been plenty of studies on simple perceptrons and multilayer perceptrons. Despite wide and active studies in theory and applications, multilayer perceptrons still have many unsettled problems such as slow learning speed and overfitting. To find a thorough solution to these problems, it is necessary to consolidate previous studies, and find new directions for uplifting the practical power of multilayer perceptrons. As a first step toward the new stage of studies on multilayer perceptrons, we give short reviews on two interesting and important approaches; one is stochastic approach and the other is geometric approach. We also explain an efficient learning algorithm developed from the statistical and geometrical studies, which is now well known as the natural gradient, learning method.
机译:自从感知器被开发用于学习对输入模式进行分类以来,已有许多关于简单感知器和多层感知器的研究。尽管在理论和应用方面进行了广泛而积极的研究,但是多层感知器仍然存在许多未解决的问题,例如学习速度慢和过度拟合。为了找到这些问题的彻底解决方案,有必要巩固以前的研究,并找到提高多层感知器实用能力的新方向。作为迈向多层感知器研究新阶段的第一步,我们对两种有趣且重要的方法进行了简短回顾。一种是随机方法,另一种是几何方法。我们还将说明一种从统计和几何研究发展而来的有效学习算法,该算法现在被称为自然梯度学习方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号