首页> 外文期刊>Neural computation >Adaptive Method of Realizing Natural Gradient Learning for Multilayer Perceptrons
【24h】

Adaptive Method of Realizing Natural Gradient Learning for Multilayer Perceptrons

机译:实现多层感知器自然梯度学习的自适应方法

获取原文
获取原文并翻译 | 示例

摘要

The natural gradient learning method is known to have ideal perfor- mances for on-line training of multilayer perceptrons. It avoids plateaus, which give rise to slow convergence of the backpropagation method. It is Fisher efficient, whereas the conventional method is not. However, for im- Plementing the method, it is necessary to calculate the Fisher information Matrix and its inverse, which is practically very difficult.
机译:众所周知,自然梯度学习方法对于多层感知器的在线训练具有理想的性能。它避免了平稳期,平稳期导致反向传播方法的收敛缓慢。这是费舍尔有效的,而常规方法则不是。但是,为实施该方法,必须计算Fisher信息矩阵及其逆,这实际上非常困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号