首页> 外文期刊>Neurocomputing >Recurrent dictionary learning for state-space models with an application in stock forecasting
【24h】

Recurrent dictionary learning for state-space models with an application in stock forecasting

机译:具有股票预测的申请的状态空间模型的反复报文 - 学习

获取原文
获取原文并翻译 | 示例

摘要

In this work, we introduce a new modeling and inferential tool for dynamical processing of time series. The approach is called recurrent dictionary learning (RDL). The proposed model reads as a linear Gaussian Markovian state-space model involving two linear operators, the state evolution and the observation matrices, that we assumed to be unknown. These two unknown operators (that can be seen interpreted as dictionaries) and the sequence of hidden states are jointly learnt via an expectation & ndash;maximization algorithm. The RDL model gathers several advantages, namely online processing, probabilistic inference, and a high model expressiveness which is usually typical of neural networks. RDL is particularly well suited for stock forecasting. Its performance is illustrated on two problems: next day forecasting (regression problem) and next day trading (classification problem), given past stock market observations. Experimental results show that our proposed method excels over state-of-the-art stock analysis models such as CNN-TA, MFNN, and LSTM. (c) 2021 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们为时间序列的动态处理引入了一种新的建模和推理工具。该方法称为反复报文学习(RDL)。所提出的模型作为涉及两个线性运算符,状态演进和观察矩阵的线性高斯马尔可维亚国内空间模型,我们认为是未知的。这两个未知的运算符(可以被视为词典)和隐藏状态的序列是通过期望和ndash共同学习的;最大化算法。 RDL模型收集了几个优点,即在线处理,概率推断和高模型表达,通常是神经网络的典型。 RDL特别适合库存预测。鉴于过去股票市场观测,其绩效有关两个问题:下一天预测(回归问题)和下一天交易(分类问题)。实验结果表明,我们的提出方法超出了最先进的库存分析模型,如CNN-TA,MFNN和LSTM。 (c)2021 elestvier b.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号