首页> 外文期刊>Computing >Application of deep reinforcement learning in stock trading strategies and stock forecasting
【24h】

Application of deep reinforcement learning in stock trading strategies and stock forecasting

机译:深增强学习在股票交易策略中的应用及股票预测

获取原文
获取原文并翻译 | 示例

摘要

Abstract The role of the stock market across the overall financial market is indispensable. The way to acquire practical trading signals in the transaction process to maximize the benefits is a problem that has been studied for a long time. This paper put forward a theory of deep reinforcement learning in the stock trading decisions and stock price prediction, the reliability and availability of the model are proved by experimental data, and the model is compared with the traditional model to prove its advantages. From the point of view of stock market forecasting and intelligent decision-making mechanism, this paper proves the feasibility of deep reinforcement learning in financial markets and the credibility and advantages of strategic decision-making.
机译:摘要股市对整体金融市场的作用是不可或缺的。在交易过程中获取实际交易信号的方法,以最大限度地提高好处是已经过了很长时间研究的问题。本文提出了在股票交易决策和股票价格预测中进行了深度增强学习的理论,通过实验数据证明了模型的可靠性和可用性,与传统模型进行了比较以证明其优势的模型。从股票市场预测和智能决策机制的角度来看,本文证明了金融市场深度加强学习的可行性以及战略决策的可信度和优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号