首页> 外文期刊>Neurocomputing >Image super-resolution based on residually dense distilled attention network
【24h】

Image super-resolution based on residually dense distilled attention network

机译:基于剩余致密蒸馏注意网络的图像超分辨率

获取原文
获取原文并翻译 | 示例

摘要

Deep convolutional neural networks (CNNs) have been playing an increasingly important role in image super-resolution (SR). However, if we just deepen or widen the networks, it could result in the excess of parameters and the increase of training difficulty. In this paper, we propose a residually dense distilled attention network (RDDAN) to address the problems in SR. Residual networks could make full use of the information of previous layers. In RDDAN we propose a connection block group (CBG), which is stacked in the feature extraction module of the network. CBG consists of two parts, dense enhancement network (DEN) and channel attention producing (CAP) module. First, instead of simply stacking residual blocks, DEN utilizes feature distillation with both dense concatenation and skip connection to extract deep and shallow features, which could enhance the representation ability. Second, with attention mechanism, CAP pays attention to the channel-wise association to adjust channel-wise features and restore high frequency feature information. By evaluating the performance of results based on benchmark methods, our method achieves a more desirable performance than state-of-the-art methods. (c) 2021 Elsevier B.V. All rights reserved.
机译:深度卷积神经网络(CNNS)在图像超分辨率(SR)中一直在扮演越来越重要的作用。但是,如果我们只是加深或扩大网络,它可能会导致参数过剩和培训难度的增加。在本文中,我们提出了一种群体密集的蒸馏注意网络(RDDAN)来解决SR中的问题。残余网络可以充分利用先前层的信息。在RDDAN中,我们提出了一个连接块组(CBG),其堆叠在网络的特征提取模块中。 CBG由两部分,密集增强网络(DEN)和渠道注意(盖)模块组成。首先,而不是简单地堆叠残余块,DIN利用具有致密级联和跳过连接的特征蒸馏,以提取深层和浅的特征,这可以提高表示能力。其次,通过注意机制,CAP注意通道明智协会,以调整通道明智的功能并恢复高频功能信息。通过评估基于基准方法的结果的性能,我们的方法实现了比最先进的方法更可取的性能。 (c)2021 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2021年第5期|47-57|共11页
  • 作者单位

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Xian 710049 Peoples R China;

    Xi An Jiao Tong Univ Sch Informat & Commun Engn Xian 710049 Peoples R China|Xi An Jiao Tong Univ Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Peoples R China|Xi An Jiao Tong Univ Sch Elect & Informat Engn SMILES Lab Xian 710049 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Single image super-resolution; Convolution neural network; Deep learning; Feature distillation; Attention mechanism;

    机译:单图像超分辨率;卷积神经网络;深度学习;特征蒸馏;注意机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号