首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Hybrid 2-D–3-D Deep Residual Attentional Network With Structure Tensor Constraints for Spectral Super-Resolution of RGB Images
【24h】

Hybrid 2-D–3-D Deep Residual Attentional Network With Structure Tensor Constraints for Spectral Super-Resolution of RGB Images

机译:Hybrid 2-D-3-D深剩余注意网络,具有结构张量限制,用于RGB图像的光谱超分辨率

获取原文
获取原文并翻译 | 示例
       

摘要

RGB image spectral super-resolution (SSR) is a challenging task due to its serious ill- posedness, which aims at recovering a hyperspectral image (HSI) from a corresponding RGB image. In this article, we propose a novel hybrid 2-D-3-D deep residual attentional network (HDRAN) with structure tensor constraints, which can take fully advantage of the spatial-spectral context information in the reconstruction progress. Previous works improve the SSR performance only through stacking more layers to catch local spatial correlation neglecting the differences and interdependences among features, especially band features; different from them, our novel method focuses on the context information utilization. First, the proposed HDRAN consists of a 2D-RAN following by a 3D-RAN, where the 2D-RAN mainly focuses on extracting abundant spatial features, whereas the 3D-RAN mainly simulates the interband correlations. Then, we introduce 2-D channel attention and 3-D band attention mechanisms into the 2D-RAN and 3D-RAN, respectively, to adaptively recalibrate channelwise and bandwise feature responses for enhancing context features. Besides, since structure tensor represents structure and spatial information, we apply structure tensor constraint to further reconstruct more accurate high-frequency details during the training process. Experimental results demonstrate that our proposed method achieves the state-of-the-art performance in terms of mean relative absolute error (MRAE) and root mean square error (RMSE) on both the "clean" and "real world" tracks in the NTIRE 2018 Spectral Reconstruction Challenge. As for competitive ranking metric MRAE, our method separately achieves a 16.06% and 2.90% relative reduction on two tracks over the first place. Furthermore, we investigate HDRAN on the other two HSI benchmarks noted as the CAVE and Harvard data sets, also demonstrating better results than state-of-the-art methods.
机译:RGB图像光谱超分辨率(SSR)由于其严重的缺点而是一个具有挑战性的任务,其目的在于从相应的RGB图像恢复高光谱图像(HSI)。在本文中,我们提出了一种新的混合2-D-3-3-DE深度剩余注意力网络(HDRAN),结构张量约束,其可以完全利用重建进度中的空间频谱上下文信息。以前的作品只能通过堆叠更多层来提高SSR性能,以捕获局部空间相关忽略特征,尤其是带特征之间的差异和相互依存;与他们不同,我们的新方法侧重于上下文信息利用率。首先,提出的HDRAN由3D-RAN的2D-RAN组成,其中2D-RAN主要侧重于提取丰富的空间特征,而3D-RAN主要模拟基点相关性。然后,我们将2-D信道注意力和3-D频带注意机制介绍到2D-RAN和3D-RAN中,以便自适应地重新校准通道和频筒功能响应以增强上下文特征。此外,由于结构张量表示结构和空间信息,我们在训练过程中应用结构张量约束来进一步重建更准确的高频细节。实验结果表明,我们所提出的方法在NTIRE中“清洁”和“清洁”和“现实世界”轨道上的平均相对绝对误差(MRAE)和均方根误差(RMSE)实现最先进的性能2018年光谱重建挑战。至于竞争排名公制MARAE,我们的方法分别实现了16.06%,相对减少了两个曲目的16.06%和2.90%。此外,我们对作为洞穴和哈佛数据集的其他两个HSI基准测试进行了调查HDRAN,也展示了比最先进的方法更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号