首页> 外文OA文献 >Deep Collaborative Attention Network for Hyperspectral Image Classification by Combining 2-D CNN and 3-D CNN
【2h】

Deep Collaborative Attention Network for Hyperspectral Image Classification by Combining 2-D CNN and 3-D CNN

机译:通过组合2-D CNN和3-D CNN,深度协作关注网络进行高光谱图像分类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Deep learning-based methods based on convolutional neural networks (CNNs) have demonstrated remarkable performance in hyperspectral image (HSI) classification. Most of these approaches are only based on 2-D CNN or 3-D CNN. It is dramatic from the literature that using just 2-D CNN may result in missing channel relationship information, and using just 3-D CNN may make the model very complex. Moreover, the existing network models do not pay enough attention to extracting spectral-spatial correlation information. To address these issues, we propose a deep collaborative attention network for HSI classification by combining 2-D CNN, and 3-D CNN (CACNN). Specifically, we first extract spectral-spatial features by using 2-D CNN, and 3-D CNN, respectively, and then use a “NonLocalBlock” to combine these two kinds of features. This block serves as a typical spatial attention mechanism, and makes salient features be emphasized. Then, we propose a “Conv_Block” that is similar to the lightweight dense block to extract correlation information contained in the feature maps. Finally, we consider a deep multilayer feature fusion strategy, and thereby combine the features of different hierarchical layers to extract the strong correlated spectral-spatial information among them. To test the performance of CACNN approach, several experiments are performed on four well-known HSIs. The results are compared with the state-of-the-art approaches, and satisfactory performance is obtained by our proposed method. The code of CACNN method is available on Dr. J. Liu's GitHub.
机译:基于卷积神经网络(CNNS)的基于深度学习的方法在高光谱图像(HSI)分类中表现出显着的性能。这些方法中的大多数仅基于2-D CNN或3-D CNN。从文献中戏剧性地,使用仅2-D CNN可能导致丢失的信道关系信息,并且使用仅3-D CNN可以使模型非常复杂。此外,现有网络模型不足以提取频谱空间相关信息。为了解决这些问题,我们通过组合2-D CNN和3-D CNN(CACNN)提出了一种用于HSI分类的深度协作关注网络。具体地,我们首先通过使用2-D CNN和3-D CNN来提取光谱空间特征,然后使用“非成像块”来组合这两种特征。该块用作典型的空间注意机制,并强调突出的特征。然后,我们提出了类似于轻质密度块的“conc_block”,以提取特征映射中包含的相关信息。最后,我们考虑一个深层多层特征融合策略,从而组合不同层次层的特征来提取它们之间的强相关的光谱空间信息。为了测试CACNN方法的性能,对四个众所周知的HSIS进行了几个实验。结果与最先进的方法进行了比较,并且通过我们所提出的方法获得令人满意的性能。 CACNN方法的代码可在J. Liu博士的GitHub上获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号