首页> 外文会议>IAPR Workshop on Pattern Recognition in Remote Sensing >Collaborative Classification of Hyperspectral and LIDAR Data Using Unsupervised Image-to-Image CNN
【24h】

Collaborative Classification of Hyperspectral and LIDAR Data Using Unsupervised Image-to-Image CNN

机译:使用无监督图像对图像CNN的高光谱和LIDAR数据的协作分类

获取原文

摘要

Currently, how to efficiently exploit useful information from multi-source remote sensing data for better Earth observation becomes an interesting but challenging problem. In this paper, we propose an collaborative classification framework for hyperspectral image (HSI) and Light Detection and Ranging (LIDAR) data via image-to-image convolutional neural network (CNN). There is an image-to-image mapping, learning a representation from input source (i.e., HSI) to output source (i.e., LIDAR). Then, the extracted features are expected to own characteristics of both HSI and LIDAR data, and the collaborative classification is implemented by integrating hidden layers of the deep CNN. Experimental results on two real remote sensing data sets demonstrate the effectiveness of the proposed framework.
机译:当前,如何有效地利用多源遥感数据中的有用信息来更好地观察地球成为一个有趣但具有挑战性的问题。在本文中,我们提出了一种通过图像到图像卷积神经网络(CNN)的高光谱图像(HSI)和光检测与测距(LIDAR)数据的协作分类框架。有一个图像到图像的映射,学习从输入源(即HSI)到输出源(即LIDAR)的表示。然后,期望提取的特征同时具有HSI和LIDAR数据的特征,并且通过集成深度CNN的隐藏层来实现协作分类。在两个真实的遥感数据集上的实验结果证明了所提出框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号