首页> 外文期刊>Neurocomputing >Unseen image generating domain-free networks for generalized zero-shot learning
【24h】

Unseen image generating domain-free networks for generalized zero-shot learning

机译:未经证明图像为广义零射击学习生成无域网络

获取原文
获取原文并翻译 | 示例

摘要

In generalized zero-shot learning (GZSL), it is imperative to solve the bias problem due to extreme data imbalance between seen and unseen classes, i.e., unseen classes are misclassified as seen classes. We alleviate the bias problem by generating synthetic images of unseen classes. The most challenging part is that existing GAN methods are only focused on producing authentic seen images, so realistic unseen images cannot be generated. Specifically, we propose a novel zero-shot generative adversarial network (ZSGAN) which learns the relationship between images and attributes shared by seen and unseen classes. Unlike existing works that generate synthetic features of unseen classes, we can generate more generalizable realistic unseen images. For instance, generated unseen images can be used for zero-shot detection, segmentation, and image translation since images have spatial information. We also propose domain-free networks (DFN) that can effectively distinguish seen and unseen domains for input images. We evaluate our approaches on three challenging GZSL datasets, including CUB, FLO, and AWA2. We outperform the state-of-the-art methods and also empirically verify that our proposed method is a network-agnostic approach, i.e., the generated unseen images can improve performance regardless of the neural network type. (c) 2020 Elsevier B.V. All rights reserved.
机译:在广义零射击学习(GZSL)中,由于看到和看不见的类之间的极端数据不平衡,因此,即,看不见的课程被错误分类,因此必须解决偏差问题。我们通过生成看不见的课程的合成图像来减轻偏置问题。最具挑战性的部分是现有的GaN方法仅集中在制造真实看完的图像上,因此无法生成现实的未经验证的图像。具体而言,我们提出了一种新的零射生成的对抗网络(ZSGAN),它学习通过观察和看不见的类共享的图像和属性之间的关系。与生成看不见的类的合成功能的现有作品不同,我们可以生成更广泛的现实看不起的图像。例如,生成的未经检测图像可用于零拍摄检测,分割和图像转换,因为图像具有空间信息。我们还提出了可以有效区分输入图像的无可比拟网络(DFN)的无域网络(DFN)。我们评估我们三个挑战的GZSL数据集,包括幼崽,Flo和AWA2。我们优于最先进的方法,并且还经验验证我们所提出的方法是网络 - 不可知方法,即,不管神经网络类型如何,所产生的未经检验图像可以提高性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号