首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Feature Generating Networks for Zero-Shot Learning
【24h】

Feature Generating Networks for Zero-Shot Learning

机译:零发学习的特征生成网络

获取原文

摘要

Suffering from the extreme training data imbalance between seen and unseen classes, most of existing state-of-the-art approaches fail to achieve satisfactory results for the challenging generalized zero-shot learning task. To circumvent the need for labeled examples of unseen classes, we propose a novel generative adversarial network (GAN) that synthesizes CNN features conditioned on class-level semantic information, offering a shortcut directly from a semantic descriptor of a class to a class-conditional feature distribution. Our proposed approach, pairing a Wasserstein GAN with a classification loss, is able to generate sufficiently discriminative CNN features to train softmax classifiers or any multimodal embedding method. Our experimental results demonstrate a significant boost in accuracy over the state of the art on five challenging datasets - CUB, FLO, SUN, AWA and ImageNet - in both the zero-shot learning and generalized zero-shot learning settings.
机译:由于可见和不可见类之间的极端训练数据不平衡,大多数现有的最新方法都无法对具有挑战性的广义零击学习任务取得令人满意的结果。为了避免需要未标记类的标记示例,我们提出了一种新颖的生成对抗网络(GAN),该网络可合成以类级语义信息为条件的CNN特征,并提供从类的语义描述符直接到类条件特征的捷径分配。我们提出的方法,将Wasserstein GAN与分类损失配对,能够生成足够的判别性CNN特征,以训练softmax分类器或任何多模式嵌入方法。我们的实验结果表明,在零镜头学习和广义零镜头学习设置下,五个具有挑战性的数据集-CUB,FLO,SUN,AWA和ImageNet的准确性均大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号