首页> 外文期刊>Neurocomputing >Robust real-time hand detection and localization for space human-robot interaction based on deep learning
【24h】

Robust real-time hand detection and localization for space human-robot interaction based on deep learning

机译:基于深度学习的空间人体机器人交互的稳健实时手检测和本地化

获取原文
获取原文并翻译 | 示例

摘要

Hand gestures are quite suitable for space human-robot interaction (SHRI) because of their natural and convenient features. While the detection and localization of hands are the premise and foundation for SHRI based on hand gestures. But hand gestures are very complicated and hand sizes are very small in some images. These problems make the robust real-time hand detection and localization very difficult. In this paper, a feature-map-fused single shot multibox detector (FF-SSD) which is a deep learning network is designed to deal with the problems of hand detection and localization in SHRI. First, the background of the method is introduced in this paper, including an astronaut assistant robot platform, the difficulties of hand detection and localization, and introduction of the state-of-the-art deep learning networks for object detection and localization. Then, the FF-SSD is proposed for detecting and localizing hands especially pony-size hands. This network takes into consideration both accuracy and speed with balanced performance. And in the experiment part, the FF-SSD is trained and tested on hand databases which include a homemade database and two public databases. At last, the superiority of the proposed method is demonstrated compared with the state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
机译:由于其自然和方便的功能,手势非常适合空间人体机器人相互作用(SHRI)。虽然手中的检测和定位是基于手势的Shri的前提和基础。但是手势非常复杂,并且在某些图像中的手势非常小。这些问题使强大的实时手检测和本地化非常困难。在本文中,一个具有深度学习网络的特征映射单射线多射击器(FF-SSD)旨在处理SHRI中的手中检测和定位问题。首先,本文介绍了该方法的背景,包括宇航员助理机器人平台,手中检测和定位的困难,以及引入用于物体检测和定位的最先进的深度学习网络。然后,提出了FF-SSD用于检测和定位手尤其是小尺寸的手。该网络考虑到具有平衡性能的准确性和速度。在实验部件中,FF-SSD在手头数据库上培训并测试,包括自制数据库和两个公共数据库。最后,与最先进的方法相比,证明了所提出的方法的优越性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第may21期|198-206|共9页
  • 作者

    Gao Qing; Liu Jinguo; Ju Zhaojie;

  • 作者单位

    Chinese Acad Sci Shenyang Inst Automat Inst Robot & Intelligent Mfg State Key Lab Robot Shenyang Peoples R China|Univ Chinese Acad Sci Beijing Peoples R China;

    Chinese Acad Sci Shenyang Inst Automat Inst Robot & Intelligent Mfg State Key Lab Robot Shenyang Peoples R China;

    Chinese Acad Sci Shenyang Inst Automat Inst Robot & Intelligent Mfg State Key Lab Robot Shenyang Peoples R China|Univ Portsmouth Sch Comp Portsmouth Hants England;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Astronaut assistant robot; Deep learning; Hand detection and localization; SSD;

    机译:宇航员助理机器人;深入学习;手检测和定位;SSD;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号