首页> 外文期刊>Neurocomputing >Semi-supervised sparse representation classifier (S~3RC) with deep features on small sample sized hyperspectral images
【24h】

Semi-supervised sparse representation classifier (S~3RC) with deep features on small sample sized hyperspectral images

机译:半监控稀疏表示分类器(S〜3RC),小型样本大小高光谱图像深度特征

获取原文
获取原文并翻译 | 示例

摘要

Hyperspectral images usually have small number of labeled samples because of the labeling cost and process difficulty. In conventional classification algorithms, classifier performance is depending on the number training samples. In this study, a deep learning based semi-supervised learning framework is proposed to solve this limited labeled sample size problem by utilizing power of labeled and unlabeled samples. The main aim of the study is constructing a general purpose deep model for a specific hyperspectral sensor type and using the model with little effort for all data sets obtained from this sensor type. In proposed framework, the model is trained with a data set from a hyperspectral sensor subsequently it is fine-tuned and evaluated with another data set acquired from the same sensor. Linearly separable deep features of the evaluation data set are extracted from the fine-tuned general deep model. Additionally, a new data formation method is proposed in the transition from hyperspectral data sub-cubes to the deep neural network input. Besides that, three different clustering methods have been used for selecting the initial labeled samples in the semi-supervised learning phase to observe the effects of the sample selection comparatively. As an another contribution of the study, a new semi-supervised sparse representation classifier (S3 RC) is proposed with labeled and unlabeled sample information by using linearly separable deep features. The performance of the proposed framework is proven by the experimental results with using small sample sizes. (c) 2020 Elsevier B.V. All rights reserved.
机译:由于标记成本和过程难度,高光谱图像通常具有少量标记的样品。在传统的分类算法中,分类器性能取决于数字训练样本。在这项研究中,提出了一种基于深度学习的半监督学习框架,通过利用标记和未标记的样品的力量来解决这一有限标记的样本尺寸问题。该研究的主要目的是为特定的高光谱传感器类型构建一般的深度模型,并使用该模型几乎努力从该传感器类型获得的所有数据集。在提出的框架中,该模型通过从高光谱传感器的数据设置,随后通过从同一传感器获取的另一数据集进行微调和评估。评估数据集的线性可分离的深度特征是从微调的一般深层模型中提取的。另外,在从高光谱数据子立方体到深度神经网络输入的转换中提出了一种新的数据形成方法。除此之外,已经使用三种不同的聚类方法来选择半监督学习阶段中的初始标记样本,以观察样品选择的效果。作为该研究的另一个贡献,通过使用线性可分离的深度特征,提出了一种具有标记和未标记的样本信息的新的半监督稀疏表示分类器(S3 RC)。通过使用小样本尺寸的实验结果证明了所提出的框架的性能。 (c)2020 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2020年第jul25期|213-226|共14页
  • 作者

    Aydemir M. Said; Bilgin Gokhan;

  • 作者单位

    Yildiz Tech Univ YTU Dept Comp Engn TR-34220 Istanbul Turkey|Signal & Image Proc Lab SIMPLAB YTU TR-34220 Istanbul Turkey|Sci & Technol Res Council Turkey TUBITAK TR-41470 Kocaeli Turkey;

    Yildiz Tech Univ YTU Dept Comp Engn TR-34220 Istanbul Turkey|Signal & Image Proc Lab SIMPLAB YTU TR-34220 Istanbul Turkey;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Hyperspectral images; Deep learning; Transfer learning; Semi-supervised learning; Sparse classifier;

    机译:高光谱图像;深度学习;转移学习;半监督学习;稀疏分类器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号