首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing. >Multiobjective-Based Sparse Representation Classifier for Hyperspectral Imagery Using Limited Samples
【24h】

Multiobjective-Based Sparse Representation Classifier for Hyperspectral Imagery Using Limited Samples

机译:使用有限样本的基于多目标的高光谱图像稀疏表示分类器

获取原文
获取原文并翻译 | 示例

摘要

Recent studies about hyperspectral imagery (HSI) classification usually focus on extracting more representative features or combining joint spectral–spatial information. However, besides feature extraction, developing more powerful classifiers can also contribute to the accuracies of HSI classification. In this paper, we propose a multiobjective-based sparse representation classifier (MSRC) for HSI data, which mainly tries to address two problems: 1) pixel mixing and 2) lacking abundant labeled samples. MSRC is motivated by the SRC, and further integrating the idea of hyperspectral unmixing. Different from the traditional SRC-based methods, the novelty of MSRC consists of the optimization process, i.e., we directly handle the L0-norm problem without any relaxation. The sparse term is not considered as a regularization operation. Instead, we transform the problem of weight vector estimation to subset selection, and propose a multiobjective-based method to optimize the L0-norm sparse problem. The residual term and sparse term are regarded as two parallel objective functions that are optimized simultaneously. We further utilize the linear mixing model to represent test pixels based on the selected atoms. The final class labels are determined according to the abundance estimation results by nonnegative least squares. Owing to the characteristics of the multiobjective method and the binary property of the sparse solution vector, MSRC does not require too many training samples to build the dictionary. Moreover, theoretically, MSRC can be easily improved to extended version such as combining spatial information.
机译:关于高光谱图像(HSI)分类的最新研究通常集中于提取更具代表性的特征或组合联合光谱空间信息。但是,除了特征提取外,开发功能更强大的分类器也可以为HSI分类的准确性做出贡献。在本文中,我们提出了一种针对HSI数据的基于多目标的稀疏表示分类器(MSRC),该方法主要试图解决两个问题:1)像素混合和2)缺少丰富的标记样本。 MSRC受SRC激励,并进一步整合了高光谱解混的思想。与传统的基于SRC的方法不同,MSRC的新颖之处在于优化过程,即我们可以直接处理L0范式问题,而无需放松。稀疏项不被视为正则化操作。取而代之的是,我们将权重向量估计问题转化为子集选择,并提出了一种基于多目标的方法来优化L0范数稀疏问题。剩余项和稀疏项被视为同时优化的两个并行目标函数。我们进一步利用线性混合模型来表示基于所选原子的测试像素。根据丰度估计结果,使用非负最小二乘法确定最终类别标签。由于多目标方法的特点和稀疏解向量的二进制性质,MSRC不需要太多的训练样本来构建字典。此外,从理论上讲,MSRC可以轻松地改进为扩展版本,例如结合空间信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号