首页> 外文期刊>Neurocomputing >Semi-wrapper feature subset selector for feed-forward neural networks: Applications to binary and multi-class classification problems
【24h】

Semi-wrapper feature subset selector for feed-forward neural networks: Applications to binary and multi-class classification problems

机译:用于前馈神经网络的半包装功能子集选择器:用于二进制和多级分类问题的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper explores widely the data preparation stage within the process of knowledge discovery and data mining via feature subset selection in the context of two very well-known neural models: radial basis function neural networks and multi-layer perceptron. It is known the best performance of wrapper attribute selection methods based on the evaluation measure provided by a classifier, although the temporal complexity of learning neural networks practically precludes the use of wrapper techniques, especially in complex databases with high dimensionality and a large number of labels. In this paper, we propose the use of the Naive Bayes classifier as a fitness function within a semi-wrapper feature selection approach. The Naive Bayes classifier is a good fast approach to a neural network and utilising it as a measure of goodness in a backward search on a ranking provides a specific attribute selection method for neural networks in complex data. The test-bed consists of 34 binary and multi-class classification problems and 7 feature selectors. Of these, there are 6 data sets with upwards of 5 classes. According to the reported accuracy results that have been supported by non-parametric statistical tests in different scenarios, our method has been shown to be very suitable for both kinds of neural networks. Moreover, the reduced feature-space is around 20% of the full attribute space. The speedup with the aforementioned semi-wrapper is very outstanding and its value fluctuates, on average, from about 1.5 with radial basis function neural networks to around 30 with multi-layer perceptron. (C) 2019 Published by Elsevier B.V.
机译:本文通过两个非常知名的神经模型的上下文,广泛地探讨了知识发现和数据挖掘过程中的数据准备阶段:径向基函数神经网络和多层的影响。众所周知,基于分类器提供的评估度量,虽然学习神经网络的时间复杂度实际上排除了包装技术的时间复杂性,但尤其是在具有高维度和大量标签的复杂数据库中的时间释放出来。在本文中,我们提出了使用Naive Bayes分类器作为一个在半包装器特征选择方法内的健身功能。 Naive Bayes分类器是神经网络的良好方法,并利用它作为在排名上的后向搜索中的良好度的度量,为复杂数据中的神经网络提供了特定的属性选择方法。测试床由34个二进制和多级分类问题和7个特征选择器组成。其中,有6个数据集,具有向上5级。根据不同方案的非参数统计测试支持的报告的准确性结果,我们的方法已被证明非常适合两种神经网络。此外,减少的特征空间是完整属性空间的20%。具有上述半包装器的加速非常出色,其值平均波动,径向基本函数神经网络与多层的影响为大约30。 (c)2019年由elestvier b.v发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号