首页> 外文期刊>Neurocomputing >Neural-network-based distributed adaptive asymptotically consensus tracking control for nonlinear multiagent systems with input quantization and actuator faults
【24h】

Neural-network-based distributed adaptive asymptotically consensus tracking control for nonlinear multiagent systems with input quantization and actuator faults

机译:基于神经网络的基于网络的分布式自适应渐近渐近渐近渐近渐近与输入量化和执行器故障的非线性多算系统的分布式渐近兼容性兼容性跟踪控制

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the consensus asymptotic convergence problem for a class of nth-order strict-feedback multiagent systems, which include the input quantization, actuator faults, unknown nonlinear functions and directed communication topology. Because the upper bounds of the time-varying stuck faults and external disturbance are commonly difficult to accurately determine, it is also assumed that these upper bounds are unknown in this paper. First, a group of first-order filters are designed to estimate the bounds of the reference signal for each agent. Second, smooth functions are introduced to compensate the effect of quantization and bounded stuck faults. Meanwhile, a new back-stepping method is used to propose an intermediate control law and an adaptive design procedure, and the final distributed control protocols are established. All closed-loop signals are uniformly bounded, and the tracking errors asymptotically converge to zero. Finally, a practical example simulation is provided to demonstrate the effectiveness of the proposed scheme. (C) 2019 Elsevier B.V. All rights reserved.
机译:本文调查了一类N级严格反馈多层系统的共识渐近收敛问题,包括输入量化,执行器故障,未知的非线性函数和定向通信拓扑。因为时变形故障和外部干扰的上限通常难以准确地确定,但也认为本文中的这些上限是未知的。首先,设计一组一阶滤波器来估计每个代理的参考信号的界限。其次,引入了平滑功能以补偿量化和有界粘滞故障的影响。同时,使用新的后台步进方法来提出中间控制法和自适应设计过程,并建立最终分布式控制协议。所有闭环信号都是均匀的有界的,并且跟踪误差渐近地会聚到零。最后,提供了一个实用的示例模拟以证明所提出的方案的有效性。 (c)2019 Elsevier B.v.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2019年第jul15期|64-76|共13页
  • 作者单位

    Univ Shanghai Sci & Technol Dept Control Sci & Engn Shanghai 200093 Peoples R China;

    Univ Shanghai Sci & Technol Dept Control Sci & Engn Shanghai 200093 Peoples R China;

    Univ Shanghai Sci & Technol Dept Control Sci & Engn Shanghai 200093 Peoples R China;

    Univ Shanghai Sci & Technol Dept Control Sci & Engn Shanghai 200093 Peoples R China;

    Univ Nevada Dept Elect & Biomed Engn Reno NV 89557 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Distributed consensus control; Neural networks; Input quantization; Actuator fault; Consensus asymptotic convergence;

    机译:分布式共识控制;神经网络;输入量化;执行器故障;共识渐近收敛;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号